Project Number: EE-WZM-1B96

DACS: The Distributed Audio Control System

A Major Qualifying Report
submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by

Stephen Scott Richardson

Date: 25 July 1997

Approved

Professor William R. Michalson, Advisor

Abstract

The Distributed Audio Control System (DACS) is a hybrid digital and analog system designed to
automate common audio tasks such as audio mixing, digital audio cueing, and MIDI device control. The
MQP explores the development of a powerful, expandible, and inexpensive system to perform these tasks.
The implementation of two custom hardware components, firmware, and software bring the design to
fruition, with near production quality.

Acknowledgements

e Michael Andrews, for PCB proofing, ideas, and assistance with presentation.

e J. Nelson Chadderdon, for LCD backlight inverters and rail of LM1972’s.

e Seann Ives, for selling me the HP logic analyzer.

e Professor William Michalson, for advising the project.

e Yeasah Pell, for loan of oscilloscope, laser printer use, random parts, loan of speakers for
presentation.

e Mark and Paula Richardson, for funding the project.

e My suitemates, Yeasah and Dave, for putting up with the hardware lab in the living room
and the testing/software lab in the bedroom.

e All of my friends (Kim, Sarah, Steph, Mike, Yeasah, Todd, and everyone else that I forgot)
for their support throughout this project.

e WPI Lens and Lights, for the loan of a pair of EAW JF-60 speakers and tripods for the
presentation.

Contents

1

Executive Summary

1.1 What Does the System do?
1.2 Why Design and Implement this System?
1.3 Project Goals
1.4 Deliverables
1.5 Conclusions L
Introduction

2.1 Design Methodologies e
2.2 Application Analysis
2.3 System Overview

High-Level Hardware Specifications

3.1 Control Board. L
3.1.1 System Description oL
3.1.2 Specification Sheet Lo
3.1.3 Panel Layout
3.1.4 Concept Rendering

3.2 Mixer Unit o . e
3.2.1 System Description L o
3.2.2 Specification Sheeto
3.23 Panel Layout
3.24 Concept Rendering L

Module-Level Hardware Specifications

4.1 Control Board
4.1.1 System Description and Diagram
4.1.2 Module Overview
4.1.3 Fader Module L
4.1.4 Output Assignment Module
4.1.5 Transport Control Module
4.1.6 Microcontroller Moduleo L.

4.2 Mixer Unit 0 e
4.2.1 Overall System Description and Diagram
4.2.2 Module Overview e
4.2.3 Audio Input Moduleo
4.2.4 Audio Mix Modules
4.2.5 Bus Combiner Module L o
4.2.6 Digital VU Module L
4.2.7 Audio Output Module L
4.2.8 Microcontroller Module,

Inter-Module Specifications

5.1 Control Board. e
5.1.1 Power e e

5.2 Mixer Unit e
5.2.1 Gain Structure Diagram oL oo
5.2.2 Powero e
5.2.3 Audio Signal Distribution oo

5.3 Digital Control Bus. L
5.3.1 Physical Specifications Lo

5.3.2 Timing and Levels L o

5.3.3 Control Board I/O Map
534 Mixer Unit I/OMap
5.3.5 A/D Converter Connection
5.3.6 Control Board A/D Map
6 Hardware Schematics
6.1 Control Board. L
6.1.1 Fader Module
6.1.2 Output Assign Module
6.1.3 Transport Control Module
6.1.4 Universal User Interface and Cue Stack Submodules
6.1.5 Microcontroller Module (Pbus and LCD interfaces)
6.1.6 Power Supply
6.2 Mixer Unit e
6.2.1 Audio Input Module
6.2.2 Audio Mix Module
6.2.3 Bus Combiner and Switcher Module
6.2.4 Digital VU Module L L
6.2.5 Audio Output Module
6.2.6 Microcontroller Module (Pbus and LCD interfaces)
6.2.7 Power Supply
7 Hardware Verification
7.1 Control Board
7.2 Mixer Unit e e
7.2.1 Balanced Audio Input Module L.
7.2.2 Unbalanced Audio Input L Lo
7.2.3 Balanced Audio Output Module
7.2.4 Overall Noise Analysis
7.2.5 Total Harmonic Distortion Analysis

8 Hardware PC Board Designs

8.1

8.2

Control Board
8.1.1 Fader Module e
8.1.2 Output Assign Module
8.1.3 Transport Control Module
Mixer Unit o e e
8.2.1 Audio Input Module
8.2.2 Audio Mix Module
8.2.3 Bus Combiner and Switcher Module
8.2.4 Audio Output Module

9 Hardware Chassis

9.1
9.2

Control Board
Mixer Unit o e e e e

10 High-Level Firmware Design

10.1

10.2

Control Board
10.1.1 Design Overview oo v vt e
10.1.2 Overall Functional Design
10.1.3 Component Functional Design
Mixer Unit o e e

10.2.1 Design Overview e
10.2.2 Overall Functional Design
10.2.3 Component Functional Design
10.3 The DACS Firmware Library

11 Firmware Protocols
11.1 Serial Communications Protocol
11.1.1 Physical Layer e
11.1.2 Framing 0 e e

12 Firmware Modules
12.1 Firmware Library e e
12.2 Control Board
12.3 Mixer Unit e e e e e

13 Firmware Code
13.1 Firmware Library, dacslib
13.1.1 SCI Serial Driver Header, SCIserial.h
13.1.2 SCI Serial Driver Code, SCIserial.c« oo
13.1.3 ACIA Serial Driver Header File, ACIAserial.h
13.1.4 ACIA Serial Driver Code, ACIAserial.c
13.1.5 Ppbus Driver Header File, ppus.h
13.1.6 Pbus Driver Code, pbus.c
13.1.7 pbus Defines Template, pbusdefn-template.h
13.1.8 Alphanumeric LCD Driver Header, stdled.h
13.1.9 Alphanumeric LCD Driver Code, stdlcd.c
13.2 Control Board
13.2.1 Firmware Build, Makefile
13.2.2 Control Board Main Code, boardmain.c.
13.2.3 Interrupt Vector Table, boardvect.c.
13.2.4 Graphics LCD Driver Header, gfxlcd.h
13.2.5 Graphics LCD Driver Code, gfxlecd.c
13.2.6 Alphanumeric and Graphics LCD Driver Defines, 1cddefn.h
13.2.7 pbus Driver Defines, pbusdefn.h L.
13.3 Mixer Unit o e
13.3.1 Firmware Build, Makefile
13.3.2 Mixer Unit Main Code, mixmain.c
13.3.3 Interrupt Vector Table, mixvect.c
13.3.4 Mixer Driver Header, mixdrv.h
13.3.5 Mixer Driver Code, mixdrv.c
13.3.6 Pbus Driver Defines, pbusdefn.h
13.3.7 Alphanumeric LCD Driver Defines, lcddefn.h

14 High-Level Software Design
14.1 Overall System: The Distributed Concept
14.2 Functional Design e
14.2.1 Service Providers
14.2.2 Main Application

15 Software Graphical User Interface

16 Software Code

16.1 MIDI Controller
16.1.1 Main Program Code, midictrl.c
16.1.2 MIDI Handler Header, midi.h
16.1.3 MIDI Handler Code, midi.c
16.1.4 Mixer Mid-Level Driver Header, mixer.h
16.1.5 Mixer Mid-Level Driver Code, mixer.c
16.1.6 CDROM Service Provider Communications Header, cdaudio_comm.h . . .
16.1.7 CDROM Service Provider CD Function Header, cdaudio func.h
16.1.8 CDROM Service Provider Main Code, cdaudio_daemon.c
16.1.9 CDROM Service Provider CD Function Code, cdaudio_func.c
16.1.10 Serial Communications Header, serial.h
16.1.11 Serial Communications Code, serial.c
16.1.12TCP/IP Client Library Header, client.h
16.1.13TCP/IP Client Library Code, client.c
16.1.14TCP/IP Server Library Header, server.h
16.1.15TCP/IP Server Library Code, server.c

A VHDL Code

A1 Control Board
A.1.1 Fader Module e
A.1.2 Output Assign Module
A.1.3 Transport Control Module

A.2 Mixer Unit
A21 Aud
A.2.2 Mix
A.2.3 Bus

ioInput Module
Module
Combiner Module

B Axiom MC68HC11 Single Board Computer References

C References
C.1 Books . .

C.2 Data Books and Data Sheets,

C.3 Web Sites

181
181
181
185
187
192
192
195
196
196
201
205
206
211
211
215
216

220
220
220
222
225
228
228
230
231

234

List of Figures

OO UL W N+

21
22
23
24
25
26
27
28
29
30
31

32

33

34

35
36
37
38
39
40
41
42
43

Typical DACS-based home studio configuration.
Typical DACS-based broadcast application.
Typical DACS-based theatre audio application.
Typical DACS-based live sound application.
DACS component hierarchy, generalized view.
Control board, panel layout and silkscreen artwork.
Control board concept rendering. L L L
Mixer unit panel layout and silkscreen artwork.
Mixer unit concept rendering.o
Control board, overall system diagram.
Control board, module-level system diagram.
Control board, fader module diagram.
Control board, output assignment module diagram.
Control board, transport module diagram.
Axiom CMM-11A8 single-board computer, used in the mixer unit.
Mixer unit, overall system diagram.
Mixer unit, module-level system diagram (analog).
Mixer unit, module-level system diagram (digital).
Mixer unit, audio input module diagram.
Mixer unit, audio mix module diagram. Systems shall have four, eight or sixteen
of these modules.
Mixer unit, bus combiner module diagram (input buses).
Mixer unit, bus combiner module diagram (output buses).
Mixer unit, digital VU module diagram.
Mixer unit, balanced audio output module diagram.
Mixer unit, unbalanced audio output module diagram.
Axiom CMD-11A8 single-board computer, used in the mixer unit.

4 circuit 0.156in spaced connector, used for power distribution in the control board.

Mixer unit gain structure diagram, input section.
Mixer unit gain structure diagram, mixer section.
Mixer unit gain structure diagram, output section.
8 circuit Molex Mini-Fit Jr. connector, used for power distribution in the mixer
Unit. .o e e e
Audio input bus pinouts. The 32 audio inputs are carried on four 16-pin headers.
1 GND is only connected at the bus combiner board.
Audio output bus pinouts. The 16 audio outputs are carried on two 16-pin headers.
1 GND is only connected at the bus combiner board.
DACS pbus , physical description. A standard 0.100 inch DIP header of 20 pins
shall be used to connect each PC board to the bus. The bus itself shall be carried
on 20 conductor ribbon cable, with each PC board connection made via a 20
conductor IDC. All signals are standard TTL levels.
Pbus timing diagram for input (Pbus master reading slave).
Pbus timing diagram for output (Pbus master writing to slave).
DACS control board prototype Pbus I/O map.
Mixer unit Pbus I/O map. L
Analog-to-digital converter connector pinouts.
DACS board prototype A/D connector assignments.
Fader module, address decoding GAL pin layout.
Fader module, analog multiplexer circuit for potentiometers.
Fader module, LED driver schematic. The module needs two of these circuits, for
atotal of 16 LEDs.

15
16
17
18
20
24
25
30
31
32
33
34
35
36
36
37
38
39
40

41
42
43
43
44
45
46
47
48
48
48

49

50

o1

92
93
53
54
54
o4
95
o7
58

44
45

46

47
48
49
50

51
52

93

54

95

o6

o7

o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

Output assign module, address decoding GAL.
Output assign module, momentary pushbutton decoding schematic. The output
assign module uses three of these circuits, for a total decoding capability of 18
on-board and 6 off-board buttons.
Output assign module, LED driver schematic. This module uses two such circuits,
for a total of 16 LEDs.
Output assign module, 7-segment display decoder and driver schematic.
Transport control module, address decoding GAL schematic.
Transport control module, momentary pushbutton decoder schematic.
Transport control module, rotary encoder interface schematic. This also acts as
the interface for the encoder on the universal interface module.
Transport control module, LED driver schematic.

61

62
63
64
65

67

Transport control module, track select 7-segment display decoder and driver schematic.

68
Transport control module, time indicator 7-segment display decoder and driver
schematic. Lo
Universal user interface submodule, rotary encoder schematic. This circuit con-
nects to the transport control encoder interface.
Universal user interface submodule, momentary pushbutton interface schematic.
This circuit connects to the output assign button interface.
Cue stack submodule, momentary pushbutton interface schematic. This circuit
connects to the output assign button interface.
Audio input module, line receiver, buffer, and gain adjust schematic (2/8 of mod-
ule). .o
Audio mix module, analog circuit schematic (1/4 of module).
Audio mix module, address decode GAL.
Audio mix module, digital circuit schematic (1/4 of module).
Bus switcher module, audio bus switching scheme for input bus 2.
Bus switcher module, audio bus switching scheme for input bus 3.
Bus switcher module, audio bus switching scheme for input bus 4.
Bus combiner module, output bus combination schematic.
Bus switcher /combiner module, address decoding GAL.
Bus switcher /combiner module, digital and relay driver schematic.
Audio output module, unbalanced driver schematic.
Audio output module, balanced driver schematic.
Audio mixer unit, power supplies for analog and digital circuitry.
Screen shot from the Cypress Warp VHDL functional simulator.
Fader module PCB, silkscreen/assembly drawing.
Fader module PCB, component-side routing.
Fader module PCB, solder-side routing.
Output assign module PCB, silkscreen/assembly drawing.
Output assign module PCB, component-side routing.
Output assign module PCB, solder-side routing.
Transport control module PCB, silkscreen/assembly drawing.
Transport control module PCB, component-side routing.
Transport control module PCB, solder-side routing.
Audio input module PCB, silkscreen/assembly drawing.
Audio input module PCB, component-side routing.
Audio input module PCB, solder-side routing.
Audio mix module PCB, silkscreen/assembly drawing.
Audio mix module PCB, component-side routing.
Audio mix module PCB, solder-side routing.

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Audio bus switcher/combiner PCB, silkscreen/assembly drawing.
Audio bus switcher/combiner PCB, component-side routing.
Audio bus switcher/combiner PCB, solder-side routing.
Audio output module PCB; silkscreen/assembly drawing.
Audio output module PCB, component-side routing.
Audio output module PCB, solder-side routing.
Control board chassis layout, top view.
Mixer unit chassis layout, top view. Lo L
Control board firmware, modular overview.
Control board firmware, intelligent mode functional flow diagram.
Control board firmware, dumb mode functional flow diagram.
Mixer unit firmware, modular overview. L.
Mixer unit firmware, intelligent mode functional flow diagram.
Mixer unit firmware, dumb mode functional flow diagram.
Mixer jobs, job slot vs. time. L
DACS firmware library, data flow and function interface overview.
Serial protocol, ’clean’ data framed for transmission.
Serial protocol, 'unclean’ data character stuffed and framed for transmission.

DACS firmware library, module view with functions.
Control board firmware, module view.
Mixer unit firmware, module view.
System view of DACS software components.
Functional flow diagram of a typical DACS service provider.
Functional flow diagram of q2q at the top level.
Functional flow diagram of q2q in the run mode.
Functional flow diagram of q2q in the edit mode.
Preliminary form for “edit cue” function.
Preliminary form for “edit event trigger” function.
Preliminary form for “build performance stack” function.

10

List of Tables

1

0 O U Wi

10
11
12
13
14

Maximum calculated power supply currents. t 13mA maximum supply current for
NE5532 dual op-amp. Assumes full system with all balanced input and output
boards. I15mA maximum supply current for SSM2163 mixer IC. Assumes full
system with sixteen audio mixer modules.
Fader module, bill of materials.
Output assign module, bill of materials.
Transport control module, bill of materials.
Audio input module, bill of materials.
Audio Mix Module, bill of materials.
Bus combiner/switcher, bill of materials.00 L.
Audio output module, bill of materials. T For balanced configuration only. iFor
unbalanced configuration only. oL oL oL
Control board user interface primitives.
Mixer job table. e
Axiom CMD-11A8 MC68HC11-based single board computer, memory map

(1/2)
Axiom CMD-11A8 MC68HC11-based single board computer, memory map (2/2).

Axiom CMM-11A8 MC68HC11-based single board computer, memory map

11

88
94
94
94
103
103
110

110
122
125
235
236

(1/2). 237
Axiom CMM-11A8 MC68HC11-based single board computer, memory map (2/2).

238

1 Executive Summary

1.1 What Does the System do?

The Distributed Audio Control System (DACS) provides a means for automating common tasks
performed in various audio engineering contexts. Automated mixing, compact disc audio cueing,
digital audio control, and MIDI device control can be automated using the DACS. This allows
complex sequences of events to be controlled with an ease not previously available.

DACS provides these automation capabilities in two distinct ways. Integration with existing
off-the-shelf MIDI software provides a means for adding automation to a home-studio environment
with relative ease. Additionally, a custom software environment allows development of audio
scripts which can be cued manually or synced to a time source. This capability means the DACS
is also equally at home in a broadcast audio or theatre audio setting.

1.2 Why Design and Implement this System?

First and foremost, there are no systems on the market currently that offer as many features as
DACS for the projected cost. This means that powerful capabilities can be brought within reach
of those working with a modest budget.

Secondly, the features of DACS are of use to me, personally. Much of my life revolves around
audio work in studio, theatre, and live settings. This project is an outlet for ideas I have had for
ways of improving capabilities in these areas.

1.3 Project Goals

When the project began, a general set of goals was established. First, it was desirable to design a
practical, marketable product. To do this would require careful balance of quality, affordability,
and expandability. Secondly, and most importantly, it was decided that the system would be
implemented, producing a product as near to production quality as possible.

These goals were very nearly met. The hardware is functional, with only some performance
issues left to conquer. Firmware and software still require additional development time to imple-
ment the complete system design, but early tests show that the system has a lot of potential.

1.4 Deliverables
This MQP has produced the following materials:

e DACS Model 411, an automated, self-contained line-level mixer in a 3-space rack-mount
form factor. The prototype unit supports 32 balanced or unbalanced inputs, eight balanced
outputs, and eight unbalanced outputs. The prototype can mix 32x4, 16x8, 8x16, or 4x8x4
channels, and is expandible to 32x16 capability.

e DACS Model 112, a self-contained system control board. Traditional audio controls such
as faders and buttons are presented, with the addition of liquid crystal and LED displays.
The board provides a powerful, intuitive way to use and program the components of the
DACS.

e Linux backend software, cdaudio_daemon, a software component to provide integration
of the audio functionality of computer-hosted compact disc drives with DACS. TCP/IP
is employed as a means of communication with other DACS elements, furthering the dis-
tributed concept.

e Linux backend software, midictrl, a software component that brings DACS support to
off-the-shelf MIDI packages such as Cakewalk Pro Audio. The software performs appropriate
translations to allow bidirectional interoperation between MIDI devices and the subsystems
of DACS.

12

e Design Specification, this document. This document details the design and development
of both the completed and uncompleted portions of the project. The design sections for
firmware and software are obvious starting points for expansion and improvement of the
project.

1.5 Conclusions

For me, DACS is a project of longer-term than an MQP can provide. The MQP has provided a
solid foundation upon which the remaining unimplemented firmware and software designs may
stand. Even though the project did not meet the initial goals to the letter, it still seems that
they were well met. Given the scope of the work completed on the project, and the degree to
which it is complete, this makes sense.

DACS is a project that, at least in concept, began for me over two years ago. Considering
the potential I see for this system, it is quite likely that development will continue beyond the
scope of the MQP. The technology of DACS is viable, affordable, and directly applicable to many
applications. Over time, it is hoped that it can be evolved into a marketable product.

The following is a list of known problems or incomplete tasks: (note: not all of these may
make sense until this design document has been read through.)

e There is a noise floor approximately 50dB down in the mixer unit. This has not been
investigated thoroughly, but it is suspected that it may be due to a grounding issue with
the SSM2163 mixer chips.

e Digital “hash” noise can be heard in the outputs of the mixer unit during periods of heavy
microcontroller activity. This is likely due to the complete lack of shielding in the unit.

e The bus combining/switching logic in the mixer unit is noisy during switching periods. This
is heard as a loud “pop” on the outputs of the unit. It is suspected that this is due to the
large switching currents used in the relays, and/or residual DC offsets between buses.

e The mis-designed input trim section requires a re-design and engineering fix. This is a
relatively important piece of functionality that is missing in the prototype mixer unit.

e The microcontrollers chosen for the task may not be sufficiently powerful. Early tests are
inconclusive, but it is a distinct possibility that a more powerful microcontroller needs to
be used.

e The firmware and software are still at a relatively immature stage, from an implementation
point of view. For the system to truly be useful, these areas need to be addressed.

e The control board requires another LCD, three buttons, and a data wheel to be mounted.
Painting and silkscreened artwork also need to be completed.

This may seem like a large list, but given the sheer number of things that went correctly, it
is a relatively small list. These items are among the first that will be addressed as the project
progresses beyond being an MQP.

13

2 Introduction

This project represents a complete re-thinking and re-engineering of an independent study project
completed between March and May of 1995 by myself and fellow WPI student and long-time
friend Michael Andrews. The original project saw the development and implementation of a
simple computer-controlled mixer, combined with software for controlling CD-ROM drives and
PC sound cards. A simple text-based front end was written to facilitate execution of user-cued
events at the push of a button. This system was developed and used in three large theatre
productions, serving as the audio control system for all of the sound effects.

While the original system functioned reasonably well for the time frame in which it was
developed (approximately 6 weeks!), it had several shortcomings that needed to be addressed.
It was clear in my mind that the product was viable and useful technology for theatre audio
applications. Research at the time showed no products with similar capabilities in our price
range, and real-world tests showed that the system removed much of the human error inherent
in manually-run audio.

A year and a half passed with no major improvements to the original system. When it came
time to chose an MQP, it seemed natural to take some concepts from the original system and
develop an entirely new system under a more reasonable development schedule. It was clear from
the outset of the project that, while the development time frame was more reasonable than the
original, the project was still extremely ambitious, especially for a one-person hardware, firmware,
and software design and development team.

The first term was spent largely doing overall system design and schematic work. PC board
design, chassis fabrication, and PC board stuffing were completed during the second term. Term
three largely involved systems testing and integration, firmware and software design and coding,
and preparation for project presentations. The final term, an optional one, was used to re-design
much of the software, begin some software implementation, and to wrap up loose ends of the
project, such as completing the documentation. By no means do I consider the project to be
completed. I intend to develop it further, to expand the capabilities and quality of the overall
system.

2.1 Design Methodologies

The remainder of this document presents the design and implementation of the hardware, firmware,
and software that comprise the DACS. For most design work, a top-down methodology was cho-
sen, except in cases where it made sense to work from the low-level and the high-level simultane-
ously. Individual hardware and software component specifications were derived from an overall
system design, which was formed using a tabula rasa approach. Essentially, this involved starting
with a clean slate rather than preconceived notions from any previous project work. Only after
some preliminary design work was done with this method were learnings from previous work
introduced. The resulting synthesis was then checked for practicality. The whole process was
iterated until a reasonable design was achieved. This process was carried out at various levels
of complexity, right down to the component level in hardware, and code level for firmware and
software.

At several points down the development chain, it made sense to re-evaluate goals and specifi-
cations set at a higher level. In some instances, it was realized that some high-level goals could
not be achieved due to problems at lower levels. In most cases, though, an attempt was made to
temper high-level goals and specifications with enough real-world knowledge to avoid any major
problems or re-working of the original designs.

At the highest level, the two custom pieces of hardware ended up, in the end, to be very
similar to what was originally envisioned. Early renderings, shown in later sections, very closely
match the final products. This seems to be a good indication that the high-level design goals
were set ambitiously (due to the amount of work it took to get the products to that point), but
not unrealistically (due to the fact that it actually is at that point).

14

2.2 Application Analysis

In order to properly form a set of specifications for the components of DACS, a set of potential
applications of the system was derived. Four contexts were chosen: a home studio setup, a
broadcast application, a theatre application, and a live sound application. Figures 1, 2, 3,
and 4 show schematic representations of these possible configurations. In each figure, shaded
boxes indicate custom hardware, developed in this MQP. Unshaded boxes indicate off-the-shelf
hardware. Custom software runs on each of the computers present in the diagrams. The diagrams
have since gone through many iterations since the initial diagrams, hence now reflect actual details
of the DACS implementation. Initially, several different diagrams were drawn, out of which these

evolved.
s o ;
H |
I | mics Dis
 (mes) (o) :
: |
! |
|
I line-lev audio : 8-track
! (bal & unbal) hard-glsk
: recorder
I mic line-lev
! preamps audio
I (unbal) 2-track
: ﬁ ~ recorder
—[sampler) DACS p

'_
|
. power
:_ mixer line-lev amp”ﬁer
Lo el speaker
- 'Rs232 (balanced) \)

|

| —
| Linux | ______ -

| Win95 server | speaker

[editing PC |

| | [
| (sequencer) ' 1 MIDI _

| 10Mbit ethernet : studio

| | monitors
' [

I I

RS485

control
board

Figure 1: Typical DACS-based home studio configuration.

Through studying potential applications and applying what was learned with the previous
system, a rough set of specifications was derived. A partial list is shown below:

e Custom audio hardware should support balanced and unbalanced line-level signals.

e Custom audio hardware should be of semi-professional studio quality, dictating relatively
low noise floor and THD specifications. This is an important improvement over the original
system, which had noise problems.

15

(balanced)

line-level
audio
——————————————————
(bal & unbal)
line-level
audio o
- - (sampler) DACS
) _ power
mixer unit amplifier
cd-rom R
|
scs| RS232
(‘play deck '

d :
[play deck) Linux server [~~~ " 7~

Win95

edit station

|

|

|

|

|

I

|

|

|

|

|

|

: I

: Linux I
|

I server e _

|

|

|

|

|

|

|

|

|

|

|

|

|

10Mbit ethernet

RS485

control
board

Figure 2: Typical DACS-based broadcast application.

16

broadcast
out

R

speaker
N —

'SR

speaker

~—

studio
monitors

speaker-level

Win95

editing PC

control
board

audio
line-level ()
line-level audio speaker
. mic audio balanced
{ mic H preamp (:
(bal & unbal) power —
- amplifier
- — - {sampler) DACS speaker
|
| mixer \ J
|
| cd-rom - | power SR
| | RS230 amplifier
: SCSI | speaker
I . . . o J
I Linux Linux Linux L _ _ _ _ _ _ -
[server server server | S
' |
: MIDI | speaker
|
| \ J
| 10Mbit ethernet :
| | RS485
|
|
|
|
|
|
|

_— e e e e e m — — — — — — — — —

Figure 3: Typical DACS-based theatre audio application.

17

mic-
level
audio

*used for microphone preamplifiers

__________ speaker-level

: audio
mics Dls : line-level -
o audio line-level soeaker
(bal & unbal) audio P
EQ power
amplifier
L J{Tji speaker
Existing DACS 4{E—)7
mixing console* mixer Q power
line-level —\—(—)7 amplifier
audio I EQ speaker
|
(bal & unbal) ,RS232
Linux | - _ _ _ _ _. 2-track
____________ MIDI server recorder speaker

control
board

Figure 4: Typical DACS-based live sound application.

e Integration with existing MIDI systems would be beneficial, both in terms of functionality

and in terms of reduced time expenditure. This integration would not only include MIDI
hardware, but existing MIDI sequencing software.

e If possible, existing audio control standards should be used, to provide compatibility between

devices.

e Some applications are set in an environment where syncing to SMPTE time codes would be

beneficial for automation purposes.

e Overall, the system needs to be flexible, and dynamically expandible and configurable.

e An intuitive, lucid way of programming and controlling the system must be created. A

major shortcoming of the original system was the lack of a decent user interface.

e The use of inexpensive off-the-shelf hardware, such as CD-ROMs for compact disc cueing,

provided a significant cost advantage in the first system. This concept should be applied to
the DACS.

The two pieces of custom hardware, the DACS mixer and the DACS control board, were settled

upon as reasonable devices to design and prototype for the MQP. Other pieces of application-
specific hardware were considered, but these two pieces of hardware were applicable to all of the
applications considered in the analysis. The DACS mixer is the core of the system, thus it was
quite clear that its implementation was necessary. The board was implemented because it is
believed that it brings a significant improvement to the usability of the system. The remaining
DACS components, firmware and software, were developed to the extent that time permitted.

18

FOH

monitors

2.3 System Overview

Figure 5 depicts the logical hierarchy of the DACS. Integration of custom and off-the-shelf hard-
ware is accomplished through the means of custom software components. Network transport
layers promote the concept of distributed task servicing. DACS service providers appear as ser-
vices on hosts located on a network, or on a single host (using the internal loopback as a virtual
network device). Front-end software accesses individual devices through a series of abstraction
layers, such that the actual location and physical characteristics of the underlying hardware
providing the service need not be known by that software.

This abstraction paradigm allows generic descriptions of actions to be created which do not
depend on the underlying hardware. This would allow, for example, the cues for a touring theatre
show to be defined generically, and run on almost any DACS configuration. One can even imagine
a CD-ROM with a generic DACS audio script (with all supporting sound effects, etc.) being sold
with the script for the play itself.

19

frontend software

network transport

backend software

network transport

backend software backend software

serial transport Linux device driver

. ISA bus, SCSI, etc.
firmware

uC, internal bus underlying physical

hardware
underlying physical
hardware
DACS custom hardware Off-the-shelf hardware

Figure 5: DACS component hierarchy, generalized view.

20

3 High-Level Hardware Specifications

The high-level hardware specifications are intended to provide an overview of the hardware com-
ponents developed for the DACS. Decomposition of these specifications is provided in later sec-
tions, to the schematic, PC board and component levels.

Some of these specifications have changed over time in a constant attempt to satisfactorily
balance the goals set at the system level and the constraints of time, money, and practicality.

3.1 Control Board

The control board is a microcontroller-based remote control unit for the various functions of
the DACS. The board shall provide familiar user interfaces for audio mixing, transport, and cue
control. In addition, a multi-purpose interface element shall be included, to provide an interface
for functions that do not fit into the paradigms mentioned above. Additionally, this interface
mechanism shall provide an easily adaptable means for future expansion.

3.1.1 System Description

The user shall be able to control the mixing features of the DACS mixer module via familiar
slide potentiometers (faders). The values of these potentiometers shall be digitized with an 8-bit
A/D converter, and processed appropriately via the internal microcontroller. Because “flying
faders” will not be used on this board due to cost, each channel shall have two LED indicators
associated with it to aid in adjusting channel values. The “active” indicator shall light if a
particular channel is active in the current mixer/matrix mode. The “grab” indicator, used when
editing mix settings, shall light green when the fader has been moved from the current setting,
and red when the old value has been “grabbed”.

The user shall have control over the channel assignment features of the DACS mixer via a
set of pushbutton switches and associated LEDs. The active output channels for a given input
channel shall be toggled with these switches. The input channel that is being controlled shall be
selectable via two pushbutton switches. An LED display shall provide visual indication of the
active channel number.

The user shall be able to control the transports of various physical or virtual audio devices.
An interface shall be provided to allow the user to select which device to work with, via a pair
of pushbutton switches. Visual indication of the current transport shall be provided via a 16
character alphanumeric LCD. The transport controls shall allow the track index and time index
to be adjusted. Track index shall be adjusted via a pair of pushbutton switches. Time index
shall be adjusted via a detented rotary encoder wheel. “Play,” “Cue,” and “Stop” functions shall
also be available to the user, via pushbutton switches with LED indicators for visual reference.

The user shall be able to execute a series of pre-programmed cues from the board. These
cues may include, but are not limited to, mixer events, transport events, MIDI events, etc. In
addition, rudimentary cue stack editing shall be allowed from the board. Cue information shall
be presented to the user via a 40x2 LCD. Three buttons shall be used to navigate and execute
the cue stack.

The unit shall incorperate an appropriate internal power supply. External connection to this
supply shall be made via a standard IEC power connector at the rear of the unit. This power
entry unit shall be of the type that filters EMI and RFI interference. It shall be appropriately
fused and switchable via a rocker switch.

The board’s microcontroller shall communicated with the rest of the DACS via an RS485
4-wire serial interface. This interface shall be presented as a 5-pin male XLR connector, and
shall be wired per the DMX512 lighting control specification. This connector was chosen due
to its robustness. The adherence to the DMX512 specification merely eliminates any potential
equipment malfunction due to accidental interconnection, as DMX512 uses the same connectors,

21

and will often be present in places this mixer will be used. The serial communication shall take
place at 9600 baud.
The unit shall be referred to as DACS Model 112 - System Control Board.

3.1.2 Specification Sheet

CONNECTORS
RS485 control : (1) 5-pin male XLR/Cannon,
panel-mount
expansion : (1) 25-pin female D-sub
POWEL ...t : (1) IEC, with EMI/RFI filter & fuse
CONTROLS
channel faders : (16) 2-3/8 inch (60 mm) travel
linear taper slide potentiometers
multi-function : (2) tactile pushbutton switches,
PC board mount
(1) detented encoder wheel
output assign : (16) tactile pushbutton switches,

with LED, PC board mount
(2) tactile pushbutton switches,
PC board mount
transport : (4) tactile pushbutton switches,
PC board mount
(3) tactile pushbutton switches,
with LED, PC board mount
(1) detented encoder wheel
cue stack controls : (3) tactile pushbutton switches,
PC board mount

INDICATORS & DISPLAYS

channel value grab : (16) T1-3/4 red/green bicolor LEDs
channel active : (16) T1-3/4 green LEDs
output channel assign ... : (10) green LEDs

(1) dual 7-segment green LED display
transport function : (3) green LEDs
RS485 link data : (1) T1-3/4 green LED
transport track & time .. : (3) dual 7-segment green LED displays,
multi-function display .. : (1) backlit LCD,

40x8 alphanumeric characters,

plus 240x64 graphics capability
transport control display : (1) backlit LCD,

16x1 alphanumeric characters
cue-stack control display : (1) backlit LCD,

40x2 alphanumeric characters

ENCLOSURE

22

dimensions : 19 inches (482mm) wide (EIA rack)
14 inches (356mm) tall (EIA 8 RU)
4 inches (102mm) deep max.

top and rear panel : steel (acrylic on prototype)
bottom, top and side : steel (aluminum on prototype)
color : satin black

external component layout : as per layout diagrams, below.
panel artwork : single-color silkscreen, white,

laid out as below.

CONSTRUCTION

All components shall be PC-board mount style, except
where not possible. Liquid crystal displays shall be covered
with transparent acrylic or equivalent material. Faders and rotary
encoders shall be mounted to the case for additional durability.

MARKETING
target retail price 1 $899 for base unit
additional modules : 16-fader expansion module

16-channel meter bridge

modules connect to expansion port

3.1.3 Panel Layout

The panel layout for the control board is shown in figure 6.

3.1.4 Concept Rendering

Figure 7 shows the original concept rendering of the control board.

3.2 Mixer Unit

The mixer unit is a microcontroller-based module that shall provide the capability to mix line-
level audio signals in an automated fashion. The unit shall be able to mix any of its active inputs
to any of its active outputs at any level, within the attenuation range of the mixer. The signal
architecture of the mixer/matrix shall be user-reconfigurable, allowing many input channels to
be mixed down to few outputs, few inputs to be mixed to many outputs, or an equal number of
inputs to be mixed to an equal number of outputs.

3.2.1 System Description

In stock configuration, the unit shall provide thirty-two line-level audio inputs capable of receiving
balanced or unbalanced audio signals. Eight balanced and eight unbalanced line-level audio
outputs shall also be present on the rear panel of the unit. These outputs may be converted
to all balanced or all unbalanced merely by changing modules. Depending on the mode and
hardware configuration of the mixer, all inputs and outputs may not be available at a given time.

23

14

9 2In3rq

“JI0M)I® USIIISY[IS pue InoAe[(oued ‘preoq [0IJU0))

TOP

BACK

13
15

11

O

previous

O 0O OO O0OO0O0OO0

O O OO OO0 0 O0

device

[O

previous

19 inches (EIA rack)

115VAC

RS485 110

O

Expansion Port

7

17 inches

19 inches (EIA rack)

(top)

w
a
7]
14 inches 14 inches
(EIA 8RU) (EIA 8RU)
3inches
4 inches

Figure 7: Control board concept rendering.

25

The digitally-controlled mixer circuitry shall behave in a logarithmic fashion, to match the
response of the human ear. The mixer shall provide from 0dB to 63dB of attenuation capability,
in 1dB steps. Additionally, near-infinite attenuation ("mute”) shall be provided for each input
channel. This dictates that the digital controller for the audio mixer shall have at least 6 bits of
resolution.

Digitally controlled switches shall be used to reconfigure the audio paths of the mixer. These
switches shall be of the “clickless” type, such that signals may be re-routed without any unde-
sirable noise entering the system.

The unit shall incorperate an 8-bit A/D converter and appropriate analog multiplexer and
driver circuitry to allow monitoring of all input and output signals, after the input buffers and
before output drivers. This setup shall form the basis for a digital VU meter. The VU meter
shall be capable of reporting signals from -10dBu to +18dBu. The converter shall function
linearly, with any necessary logarithmic conversion taking place in software. This VU data can
be displayed on the mixer unit itself via its LCD and/or transmitted over the microprocessor’s
serial uplink, to be displayed on a host PC or the DACS control board.

Mixer modes and other relevant information shall be displayed to the user via an LCD panel
on the front of the unit. A single LED shall indicate serial link activity. Another LED shall
indicate that the unit is powered.

The unit shall be constructed in a modular fashion, such that future upgrades are possible by
simply adding or changing cards. The choice of output channel boards shall be left to the user,
allowing a mixer with all balanced, all unbalanced, or half balanced and half unbalanced outputs
to be constructed. In addition to the upgrade capability, the PC boards shall be designed such
that a larger model mixer unit can be built without re-engineering the electronics. Future upgrade
options may include, but are not limited to: equalization modules, microphone preamplifier
modules, DSP effects engines, and digital audio interfaces (for AES/EBU and S/PDIF-compliant
digital audio devices).

The unit shall incorperate linear internal power supplies. Switching power supplies are un-
acceptable in this unit due to the large quantity of electrical noise they create. Separate power
buses for digital and analog circuitry shall be provided, to reduce digital noise in the analog
portions of the mixer. These supplies shall be sufficiently capable of powering add-on modules.
External connection to these supplies shall be made via a standard IEC power connector at the
rear of the unit. This power entry unit shall be of the type that filters EMI and RFT interference.
It shall be appropriately fused and switchable via a front-panel rocker switch.

The mixer unit’s microcontroller shall communicate with the rest of the DACS via an RS232 3-
wire serial interface. This interface shall be presented as a 9-pin female D-subminiature connector,
and shall be wired per the RS232 9-pin Data Communications Equipment (DCE) spec. This
allows direct connection to a host PC with a straight-through cable. The serial communication
shall take place at 19200 baud.

The unit shall be referred to as DACS Model 411 - Modular Automated Audio Mixer.

3.2.2 Specification Sheet
AUDIO INPUT AND OUTPUT

Input maximum level : +24dBu

Input impedance : 10K ohms or greater
Output maximum level : +24dBu

Output impedance : 100 ohms or less

FREQUENCY RESPONSE

20Hz to 30KHz or better, +0dB, 3dB down

26

any single input to any single

NOISE
80dB S/N ratio or better,
any single balanced input

TOTAL HARMONIC DISTORTION
0.05% THD or better,
any single balanced input

DIGITALLY-CONTROLLED AUDIO
configurations

attenuation
resolution

DIGITALLY-CONTROLLED INPUT

gain
resolution

INTERNAL ANALOG-TO-DIGITAL

adc resolution
adc acquisition range
adc acquisition points

CONNECTORS
AUDIO INPUT MODULES (4 MODULES

bal/unbal input module ...

output

+0dBu reference input signal,
to any single balanced output

to any single balanced output

MIXER

: 8x16, 16x8, 32x4, 4 discrete 8x4 (stock)

16x16, 32x8, 32x16 with expansion options

: 0dB to 63dB

1dB (64 steps)

: at least 12dB

1dB (64 steps)

CONVERTER (FOR DIGITAL VU METER)

: 8 bits
: -10dBu to +18dBu +/- 1dB
: all audio inputs (post-buffers)

all audio outputs (pre-drivers)

TOTAL)

(8) tip-ring-sleeve 1/4" phone jacks

AUDIO OUTPUT MODULES (2 MODULES TOTAL)

unbalanced output module .
balanced output module ...

PERMANENT

(8) tip-sleeve 1/4" phone jacks
(8) panel-mount 3-pin male XLR/Cannon

27

RS232/422 control : (1) female 9-pin D-sub, wired DCE

POWEL ...t : (1) IEC, with EMI/RFI filter & fuse
CONTROLS
POWET vttt : (1) panel-mount rocker switch

INDICATORS & DISPLAYS

POWET . vitiiinnnnn.n : (1) T1-3/4 green LED
RS232/422 link data : (1) T1-3/4 bicolor yel/grn LED
multi-function display ... : (1) backlit LCD,

40x2 alphanumeric characters

ENCLOSURE
dimensions : 19 inches wide (EIA rack)
5.25 inches tall (EIA 3 RU)
14 inches deep max
front/rear panel material : aluminum
other panel material : steel, top and bottom vented
module plate material : aluminum
case color : satin black
module plate color : satin black
external component layout : as in diagrams below
panel artwork : single color silkscreen, white,
as in diagrams below
CONSTRUCTION

Liquid crystal display shall be covered by transparent acrylic
or equivalent material. PC board mount connectors shall be
used for all back panel connections. These connectors

shall also be mounted to the panel for additional strength.

MARKETING

target retail price ... : $2000 for the base unit, including:
32 balanced/unbalanced line inputs
unbalanced line outputs
balanced line outputs
quad mixer modules
(8x16, 16x8, 32x4, 4x8x4 mixer modes)

S 00 00

additional modules : 8 output balanced board (replace one existing)

28

8 output precision balanced board (replace one)
8 output unbalanced board (replace one)
quad mixer module to expand system
4 additional brings system to 16x16 and 32x8
12 additional brings system to 32x16
8 input equalizer board, 3-band
8 input equalizer board, 4-band (2-parametric)
DSP effects module

modules are installed internally and via
back-panel brackets.

3.2.3 Panel Layout

The panel layout for the mixer unit is shown in figure 8.

3.2.4 Concept Rendering

Figure 9 shows the original concept rendering of the mixer unit.

29

0¢

" I0M)IR TOQIOSH[IS pue jnoke pued Jrun IoXIpN :§ 9IS

FRONT

REAR

19 inches (EIA rack)

I e

unbalanced
outputs

RsS2321/0

115 VAC

balanced
outputs

19 inches (EIA rack)

5.25 inches
(EIA 3RU)

5.25inche
(EIA3RU

Figure 9: Mixer unit concept rendering.

31

4 Module-Level Hardware Specifications

4.1 Control Board
4.1.1 System Description and Diagram

The control board is a simple piece of hardware, as it is mainly a variety of input and output
devices connected to a microcontroller. Many types of output devices are used, ranging from
simple LEDs to graphics-capable liquid crystal displays. Three main types of input devices are
used: buttons, datawheels and faders.

Figure 10 shows the overall system diagram. This view depicts the system in terms of each
of the input and output elements.

RS485 Expansion

microcontroller LCDs

— LEDs

7-segment
displays

— faders

— buttons

— datawheels

Figure 10: Control board, overall system diagram.

4.1.2 Module Overview

Figure 11 shows the various components of the control board, at the module level. The control
board is designed in a modular fashion, such that larger models with dozens of faders, transport
controls, etc. can be built. In addition, an expansion port provides the option to connect external
add-ons, such as external fader boards and meter bridges.

Unfortunately, there is very little module duplication possible in this piece of hardware. The
obvious options were to make one large module, or use the approach presented here. This design
was chosen with an eye towards expandability as well as manufacturing cost. Manufacturing
one large PC board costs a significant amount of money, whereas some money is saved by the
duplication of the largest board, the fader module. It can be argued that the cost of the com-
ponents required to connect all of the boards together is significant, but in general it seems a
wise decision from an engineering standpoint to make smaller modules that can be combined into

32

RS485 Expansion

,,,

microcontroller | Serial
/O fader

module

AID digital /O

fader
module

16x2 LCD — pbus

transport

40x2 LCD — | control |
module

matrix LCD — || output assign
module

_|

multi-function
control
module

cue stack
control
module

power L|
supply

Figure 11: Control board, module-level system diagram.

33

many different forms, not to mention debugged in a more sane fashion. This technique is often
employed in lighting control boards, where different sized boards are built from small, modular
building blocks.

4.1.3 Fader Module

Each fader module shall contain eight linear taper potentiometers, sixteen LEDs, and the nec-
essary Pbus interface circuitry. Figure 12 shows the functional diagram of a fader module. The
prototype of the control board shall contain two of these fader modules, providing a total of
sixteen faders.

1 address :
l decoding octal latch LEDs !
‘ |
‘ |
‘ |
pbus !
‘ |
‘ |
1 octal latch LEDs }
| |
‘ |
‘ analo |
1 mux 9 faders !
AD !
input | |
| |
‘ |

Figure 12: Control board, fader module diagram.

4.1.4 Output Assignment Module

The output assignment module shall contain eighteen momentary buttons, two digits of 7-segment
LED displays, sixteen LEDs, and the necessary Pbus interface circuitry. Additionally, it shall
provide a means of interfacing the additional buttons of the cue and universal interface sections
of the control board. Figure 13 shows the functional diagram of the output assign board.

4.1.5 Transport Control Module

The transport control module shall contain 7 buttons, a datawheel, 3 LEDs, six digits of 7-
segment displays, and necessary interface circuitry on a PC board. Additionally, a connection for
the datawheel of the universal interface section shall be provided. Figure 14 shows the functional
diagram of the transport control board.

4.1.6 Microcontroller Module

The microcontroller module used for in the control board shall be of sufficient computing capa-
bility to handle polling of all of the input hardware (buttons, faders, etc.), driving of the three
LCD modules, and serial communication at 19.2Kbps.

For the prototype, a pre-made Motorola 8MHz MC68HC11 microcontroller board will act as
the embedded processor for the control board. This board contains an RS232 port, an 8-input
A/D converter, an I/O port, address decoding logic, and contrast adjustment for liquid crystal
displays. Figure 15 shows this microcontroller board.

34

| |
| address | latch LED !
| decoding octal latc s !
| |
! I
| |
pbus i
| |
} octal latch octal latch LEDs !
! |
! I
| |
| |
! 2BCDto | | 7-seg !
! 7 segment displays |
! |
! |
! octal latch — buttons |
! |
! 1
! octal latch — buttons l
! |
! 1
| |
1 octal latch — buttons |
| |

external button connections
(from universal user interface & cue modules)

Figure 13: Control board, output assignment module diagram.

35

| address tal latch —— 3LED |
1 decoding octal fatc s |
| |
! |
1 |
pbus | i
| |
} octal latch octal latch ' external data
i | wheel
| i (universal user
1 data wheel | ! interface module)
} 7 buttons i
| |
! allatch | 2BCD1o | | 7-seg 1
! octal fate 7 segment displays |
! l
1 allatch | 2BCD1o | | 7-seg ;
| octal latc 7 segment displays ;
! j
|
| wal latch || 2BCDto | | 7-seg i
l octal latc 7 segment displays 1
! |
! |

Figure 14: Control board, transport module diagram.

'r.
TR .
_'}-::* LT T IR LT

® -

Figure 15: Axiom CMM-11A8 single-board computer, used in the mixer unit.

36

In a marketed model, a custom microcontroller board would be developed that includes only
the necessary features. However, due to the time frame of this project, it makes sense to use a
pre-manufactured microcontroller board. While it would certainly have been possible to develop a
microcontroller board, the time spent debugging the inevitable problems would have significantly
taken away from firmware and software development.

4.2 Mixer Unit
4.2.1 Overall System Description and Diagram

The mixer unit is a hybrid analog-digital device. The system is broken up into several logical
blocks. Modules dedicated to handling audio inputs and outputs work in conjunction with matrix-
mixer modules to provide the necessary functionality. A digital VU meter board provides audio
level monitoring capability to the system. Additionally, a microcontroller is used to control the
functions of the unit, with an LCD to display status information.

Figure 16 shows the overall mixer unit diagram. This view shows the system in terms of its
functional blocks.

RS232/422 inputs (balanced, unbalanced)

microcontroller

| mixer/matrix digital VU

LCD

digital

110

I

— audio output

I
I
]
|
|
I
I
I
I
I
I
]
]
|
I
I
|
meter |
|
|
I
I
I
I
I
I
]
]
|
I
I
I
I
I
I
|
|
I

analog (audio)

outputs (balanced, unbalanced)

Figure 16: Mixer unit, overall system diagram.

4.2.2 Module Overview

Figures 17 and 18 show the system architecture of the mixer unit at the module level. The
system is laid out in a modular fashion, such that it can be expanded and upgraded from an
initial configuration.

Audio input and output boards mounted to panel-mounted aluminum brackets, allow reason-
ably simple upgrades. Audio mix PC boards can be added to the system as well, however this
upgrade process is slightly more involved, as a different wiring harness is needed to connect to
the boards.

37

8ins

8ins

8ins

8ins

input board

input board

,,,,,,,,

mixer

internal expansion
bus

mixer

input hoard

output board

mixer

input hoard

bus combiner

logic

32->32 4<-16

32->16 8<16
32->8 16<-16

input buses
(8 signals each)

output buses
(8 signals each)

output board

Figure 17: Mixer unit, module-level system diagram (analog).

38

8 outs

8 outs

input board

input board

input board

input board

bus combiner

logic

microcontroller serial
110
digital 1/0 A/D
LCD

pbus digital I/0

digital VU

39

Figure 18: Mixer unit, module-level system diagram (digital).

RS232

1422

linein1

linein 2

linein 3

linein 4

linein5

line in 6

linein7

linein 8

This particular scheme of modularity was chosen for two main reasons. First, it extends the
ability to expand and upgrade the system. Secondly, there are substantial manufacturing cost
reductions involved due to the duplication of several of the modules.

4.2.3 Audio Input Module

As per high-level specifications, each audio input can be either balanced or unbalanced. Each
input module consists of eight tip-ring-sleeve 1/4 inch jacks, appropriate circuitry for processing
the input signals, and appropriate Pbus interface circuitry. As per specifications, a digitally-
controlled gain stage shall be employed, to provide a trim adjust for each input.

Figure 19 shows a block diagram of an audio input module. A standard system has four of
these modules.

differential line receiver

_ digitally controlled trim
1 3 R
I S)
_ N7 S— + \mlahgnally controlled trim
L v _
_ digitally controlled trim
T + %
L v ~
_ digitally controlled trim
NV S— 3 R
~ Y -
_ digitally controlled trim
1 + %
I S)
_ digitally controlled trim
1 3 R
I S)
_ digitally controlled trim
1 3 R
L v ~
_ digitally controlled trim
T + %
~ Y -

Figure 19: Mixer unit, audio input module diagram.

4.2.4 Audio Mix Modules

The audio mix modules are the core of the mixer unit. Each module shall contain four eight-to-
two attenuating mixer chips. These mixers shall digitally controlled, and shall provide at least
63dB of attenuation in 1dB steps, as per the high-level specification.

At this stage, it made sense to attempt to locate such a part, and indeed, one was found. The
SSM2163 from Analog Devices is such a hybrid mixing device. It has respectable specifications,
and is about $12 in quanitites between 10 and 100.

One output from each mixer chip is fed to a position on each output bus. With the system
in stock configuration with four mix boards, one chip drives each output bus line. In larger

40

configurations, up to four mixer chips (from different mixer modules) may be attached to any
one output bus line. The remaining output from each mixer chip shall be available for future
upgrades such as inputs to DSP modules, etc.

Figure 20 depicts a mix module. A stock system has only four of these boards, but up to
sixteen may be used in a system.

input bus 1

8 : 2 mixer
input bus 2

8 : 2 mixer
input bus 3

8 : 2 mixer
input bus 4

8 : 2 mixer

output bus 1

output bus 2

expansion bus

Figure 20: Mixer unit, audio mix module diagram. Systems shall have four, eight or sixteen of these modules.

4.2.5 Bus Combiner Module

The bus combiner module provides the capability to dynamically reconfigure the signal archi-
tecture of the unit. Since the input and output sections are divided up in to buses of 8 audio
signals, these buses can be combined or separated, changing the architecture of the mixer. This
is only useful in systems with less than sixteen mix modules, as there are not enough mixer chips
to fully cover a 32x16 mix configuration. In a four or eight mix module system, bus combination
is necessary, to reduce the number of inputs to gain a large amount of outputs, or vice-versa.

Figure 21 shows the input bus combiner diagram, while figure 22 shows the output bus com-
biner diagram. These are shown separately only for clarity; they shall be combined in the same
module on the prototype.

4.2.6 Digital VU Module

The digital VU module multiplexes and processes the audio signals from all of the input and
output buses. The output from this board shall be suitable for input to an analog-to-digital
converter operating in the 0-5V range.

Figure 23 shows the functional diagram of the digital VU module.

4.2.7 Audio Output Module

As per high-level specifications, balanced and unbalanced audio output formats are available on
the mixer unit.

Balanced output modules consist of eight XLR/Cannon style connectors and necessary driver
circuitry. Figure 24 shows the respective functional diagram.

Unbalanced output modules consist of eight tip-ring-sleeve 1/4 inch jacks, a PC board, and a
metal mounting bracket. Figure 25 shows the respective functional diagram.

41

from audio input modules

input bus 1

_ 8 signal
input bus 2 dual throw
audio switch
' 8 signal
input bus 3 dual throw
——— G0 switch

input bus 4
S

8 signal
dual throw
audio switch

Figure 21: Mixer unit, bus combiner module diagram (input buses).

42

input bus 1

input bus 2

input bus 3

input bus 4
—— (4, 2 Or 1)

(1 always)

(2or1l)

(3orl)

Sa|npow Xiw olpne o}

[8 pole
audio
switch

quad
audio
switch

output bus 1

output bus 2

Figure 22: Mixer unit, bus combiner module diagram (output buses).

8-to-1
analog
multiplexers

input bus 1

input bus 2

input bus 3

input bus 4 T —

8-to-1
analog
mux

output bus 1

output bus 2

to A/D

active
rectifier

Figure 23: Mixer unit, digital VU module diagram.

43

summer differential driver

balanced out 1

>

balanced out 2

balanced out 3

balanced out 4

balanced out 5

balanced out 6

balanced out 7

balanced out 8

LILLLLL

Figure 24: Mixer unit, balanced audio output module diagram.

44

summer

>

#

4.2.8 Microcontroller Module

For the prototype, a pre-made Motorola 8MHz MC68HC11 microcontroller board will act as the
embedded controller for the mixer unit. This board contains an RS232 port, an RS485/RS422
port, an 8-input A/D converter, and an 8255-based peripherial I/O controller. In addition, it
includes an I/O port, address decoding logic, and contrast adjustment for liquid crystal displays.

#

Figure 26 shows this microcontroller board.

In a marketed model, a custom microcontroller board would be developed that includes only
the necessary features. However, due to the time frame of this project, it makes sense to use a
pre-manufactured microcontroller board. While it would certainly have been possible to develop a
microcontroller board, the time spent debugging the inevitable problems would have significantly

taken away from firmware and software development.

45

N Y e Y N o O

unbalanced out 1

unbalanced out 2

unbalanced out 3

unbalanced out 4

unbalanced out 5

unbalanced out

unbalanced out 7

unbalanced out 8

Figure 25: Mixer unit, unbalanced audio output module diagram.

Figure 26: Axiom CMD-11A8 single-board computer, used in the mixer unit.

46

5 Inter-Module Specifications

The mid-level hardware specifications are intended to bridge the gap between the high-level
designs presented in the last section and the next section. As such, the main intent is mostly
to provide exposure to the elements that make up each component, as well as some overall
component details.

5.1 Control Board
5.1.1 Power

The control board is primarily a digital device, and as such does not require any negative DC
voltages. The primary supply voltage is +5V, thus greatly simplifying both the power supply
and power distribution methodology.

Figure 27 shows the pinouts for the connector used to distribute power to each of the PC
boards inside of the control board.

0 O O O |4

pin

voltage

+5V

GND

GND

=W N =

+5V

Figure 27: 4 circuit 0.156in spaced connector, used for power distribution in the control board.

There shall be 10uF of power supply bypass capacitance for each supply line used on each PC
board. Additional 0.1uF bypass capacitors shall be placed near each IC, as appropriate.

5.2 Mixer Unit
5.2.1 Gain Structure Diagram

Taking audio specifications in to account, overall system gain structure diagrams have been con-
structed. Figure 28 depicts the input gain structure for a single channel. Included in this section
is gain reduction for a balanced input, adjustable trim control, and an overall gain reduction
before passing to the next stage.

Figure 29 depicts the gain structure for the mix stage of the mixer unit. This stage only
attenuates the input signal, up to 63dB, as per the high-level specification.

Figure 30 shows the gain structure for the output stage. Note a constant input section gain,
and a constant gain on the balanced outputs.

5.2.2 Power

Since the mixer unit is a hybrid digital/analog device, several power supplies are necessary. It is
desirable to keep digital and analog supplies separate, as digital circuits tend to inject a lot of
noise on to their power supply rails.

A £+ 7V power supply is necessary, since the mixer chips chosen can not operate outside of
the range of + 7.5V. The specifications of the system dictate that large signals from external
devices (up to +24dBu) may be used with the system. This dictates that a + 14V power supply

47

Figure 28: Mixer unit gain structure diagram, input section.

Figure 29: Mixer unit gain structure diagram, mixer section.

Figure 30: Mixer unit gain structure diagram, output section.

be used for the rails of the input and output boards. Adding a +5V power supply for the digital
elements of the system rounds out the power requirements of the system.

Each board receives its return grounds from the power connector, not from any of the other
connectors present on the board. All ground signals are connected at the power supply. This
star grounding technique shall be employed to eliminate ground loop problems.

Figure 31 shows the pinouts of the power connector for boards in the mixer unit.

8

pin voltage

+5V (digital)

GND (digital)

-14V (analog)

-7V (analog)

+14V (analog)

+7V (analog)

N.C.

QO | O TY I=| W DN~

GND (analog)

Figure 31: 8 circuit Molex Mini-Fit Jr. connector, used for power distribution in the mixer unit.

5.2.3 Audio Signal Distribution

Several audio signals need to be distributed among many modules in the mixer unit. To accom-
plish this, a bus architecture is used. Each bus carries eight audio signals on standard ribbon
cable. Connection to each PC board is made via standard IDC sockets, and board-mounted
headers.

The signals on each ribbon cable bus are arranged such that they are separated by a signal
ground. This helps to prevent crosstalk between channels carried on the same bus. The ground
signals are only to be connected at the bus combiner module, eliminating ground loop problems.

Figure 32 shows the pinouts for the audio input buses, of which there are four. Figure 33
shows the pinouts for the two audio output buses. The signal levels on these buses shall be no
higher than +18dBu (about 6.15V peak).

5.3 Digital Control Bus

The modular design of the DACS subsystems begs for a flexible means of connecting a variety of
PC boards together such that the internal microcontroller (¢C) may communicate with them.
Thus, a “pseudo-bus” (dubbed the Pbus) is defined, to be generated by the puC . The Pbus is a
master-slave type of bus, where the master is the microcontroller board, and the slaves are the
various devices connected to the bus. The signal levels on the bus are standard TTL levels.

To remove any confusion, it should be noted that the Pbus is not the same as the uC bus, but
is rather built on top of the underlying C bus structure. This abstraction layer allows many
different types of controllers to act as Pbus masters, thus allowing a virtually limitless choice of
microcontrollers and microprocessors.

Additionally, simple PC-hosted hardware can be constructed to allow easy Pbus development,
testing and debugging. A simple, but extraordinarily useful PC-hosted bus-snooper will likely be
constructed in order to aid later firmware debugging tasks.

49

2200000000 |16
11 0O 00000 O0 |5
pin function
(bus A) (bus B) (bus C) (bus D)

1 GNDT

2 audio in (1) (9) (17) (25)

3 GNDf

4 audio in (2) (10) (18) (26)

5 GNDt

6 audio in (3) (11) (19) (27)

7 GNDT

8 audio in (4) (12) (20) (28)

9 GNDT

10 audio in (5) (13) (21) (29)

11 GNDft

12 audio in (6) (14) (22) (30)

13 GNDt

14 audio in (7) (15) (23) (31)

15 GNDt

16 audio in (8) (16) (24) (32)

Figure 32: Audio input bus pinouts. The 32 audio inputs are carried on four 16-pin headers. 1 GND is only
connected at the bus combiner board.

50

pin | function (bus A) (bus B)
1 GNDf

2 audio out (1) (9)
3 GNDf

4 audio out (2) (10)
5 GNDf

6 audio out (3) (11)
7 GNDf

8 audio out (4) (12)
9 GNDf

10 audio out (5) (13)
11 GNDf

12 audio out (6) (14)
13 GNDf

14 audio out (7) (15)
15 GNDf

16 audio out (8) (16)

Figure 33: Audio output bus pinouts. The 16 audio outputs are carried on two 16-pin headers. 1 GND is
only connected at the bus combiner board.

5.3.1 Physical Specifications

The Pbus is physically built around commonly available 20-pin DIP headers, ribbon cable and
insulation displacement connectors (IDC). The pinouts are depicted in figure 34. Note the pres-
ence of a single ground pin. Slaves on the Pbus shall not use this as a ground; it is present to
simplify connection of an external bus snooper.

Typical uC connection to the Pbus shall be made via a few byte-wide 1/O ports, a peripheral
I/0 controller such as the venerable Intel 8255, or through a piece of programmable logic.

With 7 bits of address space and a byte-wide data bus, there exist 128 input and 128 output
ports in this bus. I/O maps are given for the control board and mixer unit in a later section.

5.3.2 Timing and Levels

The Pbus is a relatively low-speed digital I/O bus. Timing is not exceptionally critical, as the
speed of the bus is in the sub-1MHz range. Nevertheless, a visual reference to the bus timings is
useful to fully understand the pPbus . Figure 35 depicts the timing for the Pbus master reading
data from a slave device. Figure 36 shows the timing for the Pbus master writing data to a slave.

Note that the control signals of the bus are level-sensitive, not edge-triggered. During the
time when a particular input or output window is active, there is a transparent window between
the master and the active slave(s), in the direction dictated by the direction control line.

5.3.3 Control Board I/O Map
Figure 37 shows the Pbus I/O map used in the control board.

51

2/l0000000000|%
1| 0000000000 |y

pin function direction (from pC)

1 data 0 I/0
2 | bus latch (to latch data to/from devices) out
3 data 1 1/0
4 GND (for Pbus snooper) N/A
5 data 2 1/0
6 clock (for serial devices) out
7 data 3 I/0
8 addx 0 out
9 data 4 I/0
10 addx 1 out
11 data 5 I/0
12 addx 2 out
13 data 6 I/0
14 addx 3 out
15 data 7 I/0
16 addx 4 out
17 sense (for device auto-sensing) in

18 addx 5 out
19 bus read/write out
20 addx 6 out

Figure 34: DACS pPbus , physical description. A standard 0.100 inch DIP header of 20 pins shall be used to
connect each PC board to the bus. The bus itself shall be carried on 20 conductor ribbon cable, with each
PC board connection made via a 20 conductor IDC. All signals are standard TTL levels.

52

data

addx

read-/

write

latch-

data

addx

read-/

write

latch-

all unaddressed slaves in hi-Z -- master in input mode
ol

data output from bus device onto bus
(microcontroller read)

Figure 35: Pbus timing diagram for input (Pbus master reading slave).

master puts data on bus

data latched from bus to device
(microcontroller output)

Figure 36: Pbus timing diagram for output (Pbus master writing to slave).

53

address range | direction (from pC) function
0x00 - O0xOF out fader analog mux address
0x10 - O0x2F out LEDs (individual and 7-segment)
0x30 - Ox4F in switches (buttons, etc.)
0x50 - 0x57 in quadrature decoders (datawheels)
0x58 - OxTF — reserved for expansion

Figure 37: DACS control board prototype Pbus I/O map.

address range | direction (from uC) function
0x00 - OxOF out input board trim control
0x10 - Ox2F out mixer module control
0x30 - 0x37 out bus combiner control
0x38 - 0x3F out digital VU control
0x40 - OxTF — reserved for expansion

Figure 38: Mixer unit Pbus I/O map.

5.3.4 Mixer Unit I/O Map

Figure 38 shows the Pbus I/O map for the mixer unit.

5.3.5 A/D Converter Connection

Several of the modules in both the control board and the mixer unit require connection to the A/D
converter present on the microcontroller modules. A generalized scheme for connecting devices
to these A/D inputs is specified, such that a single ribbon cable with several inexpensive IDC
connectors can be connected between all devices requiring A/D access. Each of these modules
shall be equipped with a 10-pin 0.100 inch DIP header, with pinouts as shown in figure 39.

A map of A/D port use is given for each piece of hardware in a later section.

2loo0000 |10
1| O00000]|,

pin function

A /D converter input 1 (0-5VDC

A /D converter input 2 (0-5VDC

A /D converter input 3 (0-5VDC

A /D converter input 4 (0-5VDC

A /D converter input 5

A /D converter input 6 (0-5VDC

A /D converter input 7 (0-5VDC

[y P [[Sy ey [y

)
)
)
)
0-5VDC)
)
)
)

A /D converter input 8 (0-5VDC

O 0O | O U | W DO —

reserved

[y
s}

reserved

Figure 39: Analog-to-digital converter connector pinouts.

54

5.3.6 Control Board A/D Map

The analog input map for the prototype DACS board is shown in figure 40. Note that very few
of the inputs are used.

A /D input function
1 leftmost 8 fader inputs (muxed)
2 rightmost 8 fader inputs (muxed)
3-8 reserved for expansion

Figure 40: DACS board prototype A/D connector assignments.

55

6 Hardware Schematics

6.1 Control Board
6.1.1 Fader Module

The fader module uses a standard block of Pbus interface logic. A 16V8 GAL (gate array logic)
chip shall provide address decoding functionality. Figure 41 shows the pin assignments of this
piece of programmable logic. While other means of address decoding are certainly possible, a
GAL was used to reduce chip count, and provide enhanced functionality. The fact that GALs are
completely programmable allows any address to be decoded. Thus, different GALs with different
addressing may be used for duplicate boards in a system. The VHDL code used to generate the
GALs is included in the appendices, on page 220.

To reduce the number of A /D ports required, the eight slide potentiometers are connected to a
4051 8-to-1 analog multiplexer. The schematic shown in figure 42 shows how these potentiometers
are connected. A single enable line generated by the GAL enables the address lines of the 4051.

Sixteen individually addressable status LEDs are driven with a pair of 74L.S373 octal latches.
The LEDs are arranged such that the ’373 is sinking the current when the LED is on, thus the
status of the LEDs will appear inverted. Note that other schemes could have been used to drive
the LEDs, but the latched method reduces CPU load considerably, as there is no refresh cycle to
chew up CPU time, as in a multiplexed design. A pair of enable lines, generated by the address
decode GAL, activate each latch. Figure 43 shows one of two of the LED driver circuits needed
for the fader module.

6.1.2 Output Assign Module

The output assign modules uses a 16V8 GAL for address decoding and enable signal generation.
Figure 44 shows the pin assignments for the GAL used in the output assign module. The VHDL
code used to generate the GALs is included in the appendices, on page 222.

The status of 18 pushbutton switches need to be sensed by the microcontroller. Many methods
exist for connecting switches to a microcontroller bus. To keep parts count and CPU use down,
simple latches are used to latch the status of eight switches at a time. Firmware debouncing
routines shall take the place of hardware debouncing techniques. The lack of a multiplexing
scheme means less CPU time is wasted in reading in the values of the switches, while the firmware
debouncing routines mean fewer components are used on the board. Figure 45 shows the circuit
used to achieve these goals. Three of these circuits are present, providing a total of 24 pushbutton
inputs. Six of these inputs are used for pushbuttons in the universal user interface and cue stack
sections of the control board.

The output assign module contains several LED indicators that need to be controlled by
the microcontroller. A simple current-sinking scheme involving 74L.S373 octal latches is used,
identical to that of the fader module. Figure 46 shows the circuit.

The output assign module contains a pair of 7-segment LED displays, controlled by the micro-
controller. While it certainly would have been possible to drive the displays in a similar fashion
to the bare LEDs present on the same board, this was decided against due to the extra Pbus
ports needed. Instead, BCD-to-7-segment decoders were used, with their inputs driven from a
7415373 latch. Figure 47 shows the circuit used to drive the 7-segment displays. Note the use of
the ripple zero-blanking feature of the 74L.5247 BCD-to-7-segment chips. This feature will blank
both displays when the a double-zero is displayed, and blank the leftmost display when its value
is zero.

6.1.3 Transport Control Module

As in other DACS modules, a 16V8 GAL is used for Pbus address decoding and enable signal
generation. Figure 48 shows the pin layouts for this GAL. The VHDL code used to generate the

56

sS)

8A9TH9 %M
)

—e

9 xppe snqd

(Gzias_=nad] "

! 6
- 0 I e {c xppe_snad]
(G eiaets pe] ‘o e L3 xppe_znad]
— b = L& xppe_znad]
(Zeiaens pai) o = Lz xppe_snad]
=10 s i ppe_smad]
(Fiass xne] 0 | Lo xppe snad]
o g Lusyer snad]
81| °) Z
[Xi 1
-
[
o5
_ s _ 3 _ G _

Figure 41: Fader module, address decoding GAL pin layout.
57

syod api|s Jade) Jeaul| ssa)awol)uajod | |8

3005 1005 1005 2005 4005 4005 J00S Nees

20— RAM———i

SSA 8d L 9y Sy 1 Ed zd ik}
saaean 41e 150 o _Iv =S S S S S S
— e 6 - L
s L St
— s s - She
— € s
18 ' L ! mﬁ
T
nr .—wn
wm.
d
spa0d /4 8 4o 3v0 99|35 ﬁx_w .
TN 3B
N3 -w ze~snqd]
8XauW
%/_o: » aulu:nn_
EET agA
solm:nn_
eua—xnu]|

Figure 42: Fader module, analog multiplexer circuit for potentiometers.
58

T 031
—~W——f
M
83 sa
20¢ @31
WP
Ly L0
a0e 031
Wy
M
LY 90
8¢ 031
WP
M
[sa
T 031
—AW !._,. oo
i +a €LESTYL -
031
oo 9 T n:olvn__
VWV 'h_/; 20 p T
(2] €a 08 as p-snqd
61 61 —
s0e 031 51| %4 % Ssp=zn
=7 0° a9 5 p-snad
— A 'h_ > 0s oS |7 p-snad|
M 04 0% p=snad
3 8
2] za 5 0¢ ag [p=snqd
a3l 0z az p—snqd|
ooe m o1 at M Copsnad
AW pi _ K
{ on)
13 10 33
o}
o+
9 | c | ¥ | B | z

59

Figure 43: Fader module, LED driver schematic. The module needs two of these circuits, for a total of 16

LEDs.

ssp
.ﬂ 8A31189 ﬁ
©
77 32
G ! CECIRE
1 0 | M Xppe-snqd
(rua—g-1"u1q =1 © [N xppe—snqd
]] xppe—snqd
(eua=g1-5—un1q M” "] | M Exppe—snqd
_ 51 © s Xppe—snqd |
eue—9z-,1-u1q i e Xppe—5nqd |
57l 0] z xppe=snqd
Gt o K TTan/ress-snad]

sua=g1-6- P3|
|

Figure 44: Output assign module, address decoding GAL.
60

J?

1

2

3

4

S

6

7

8

9

10
CONN1D

I,

SW_PUSHBUTTON

SW_PUSHBUTTON
S
0
—

6ND

4
s
o

10
20
30
0
S0
6D
70
8D

C

6

g
74L5373

20
30
40
sa
60
70
80

pbus datla
s

p
p
o
p
P

u
u
u
us
u
us
|btn ens

Figure 45: Output assign module, momentary pushbutton decoding schematic. The output assign module
uses three of these circuits, for a total decoding capability of 18 on-board and 6 off-board buttons.

61

T 031
—~W——f
M
83 sa
20¢ @31
WP
Ly L0
a0e 031
Wy
M
LY 90
8¢ 031
WP
M
[sa
T 031
—AW !._,. oo
i +a €LESTYL -
031
oo 9 T n:olvn__
VWV 'h_/; 20 p T
(2] €a 08 as p-snqd
61 61 —
s0e 031 51| %4 % Ssp=zn
=7 0° a9 5 p-snad
— A 'h_ > 0s oS |7 p-snad|
M 04 0% p=snad
3 8
2] za 5 0¢ ag [p=snqd
a3l 0z az p—snqd|
ooe m o1 at M Copsnad
AW pi _ K
{ on)
13 10 33
o}
o+
9 | c | ¥ | B | z

62

Figure 46: Output assign module, LED driver schematic. This module uses two such circuits, for a total of

16 LEDs.

(Aeyds1p yuaubas-£) 1181p puosas

N9
a3l a3l R LYTS1YL [
ela via
.|vh +d ® 11 p—
M _|m_o 3 188 p—
vh_{ —d3 osaia po—
a 8
e EE
031 'h_{ Z1 u w T
1o | 1 A
N en o
937 g1 1
J3A
031 S
60 '«—r
azr, *¥
o]
S+ 8a =
aNo
€LESTHL -
s
9 u:oloonn_
08 as p—snqd
= ”” oL az m” Cop=2nad]
T 7] 09 a9 s p—snad
71| °S s =5 p-snqd|
o g p=snad
(Aeydsip yvaubas-1) 1161p)51y e oe ae Z an:aJw.
— oz oz|s p=sna
=sn
ano o1 o g Cop=sngd]
-
031 0gq A 19251492 M on N
L0 L
90 33N
.|vh_ +d ° 11 o
N _|n_nu 183 P
'h_/; =q3 os¥ig p5—
a 8
031 ¢g |on_.“ 9 ? w
a1 'h_{ 7] 8 M
10 | 1 P
031 > en g
ea 1
J0A
031 S
20 'h_
g3 A
S 1a
_ L I 9 I < I I € z

Figure 47: Output assign module, 7-segment display decoder and driver schematic.

63

GALs is included in the appendices, on page 225.

7seg_2+4_ena
7seg_1+3_ena
encoder_ena
7seg_5t6_ena
pbus sense

—ln
o| || ofi] +|o|cf
) I I I) I I Y -~ g
Oooooooo W o
o w <
p{a— 3
> 2g a
o~ o
N
—
2 1 >
| o] +[10] 0 -] 0| 0
o
I 1 It A1 O 1 O 61
ZLEL A A A L %
< 55|
512]3|
NEEHEEEEE
=1 B Y O O O O L
ol Sjujufulninluln
wjo| 33313333
8 ojojojojojofo
Ql
w
3
2
Qlf
= T = T S T S T ™ T = T = T =

Figure 48: Transport control module, address decoding GAL schematic.

The transport control module contains 7 pushbuttons, the status of which need to be detected
by the microcontroller. The identical latching and firmware debouncing scheme is used in this
module as is used in the output assign module. Figure 49 shows this circuit.

A rotary shaft encoder is used as a data entry wheel in the transport control module. This
encoder outputs two bits, which represent the position of the shaft. Hardware quadrature de-
coders can be used to give direction and clock signals. However, in the interest of conserving

64

NOLLNEHSNd™NHS

o 0————————————
-
8S

NOLLNGHSNd™HS

o0 0———————————————

sus _:n_

-
LS
ans
ELESTYL
)
—;
NOLLNEHSNd™NS T
o @ £ s 08 08| e1ep _snad
- o7 0¢ 0L |55 ©1ep snqd
ss s 09 516 50
kL as 0s 51 e)e sn
NOLLNEHSNdTNS _ Mn 04 04 NM TSP <nad
o & 7 ae [i[3 3 e)ep snqd
- 1 6 0z [— e)ep snqd
48 =197 01— ejep snqd
- N
NOLLNEHSNd™NS S en
o 0—— — 1
- 204
NOLLNEHSNd™NS
o @0— —
-
@8 EIAI 2NN TAT AR AT A TAT
NOLLNEHSNd™NS Ly sd €3 1E-]
prax4 AT o Nee
L o ¢o— —
2 83 W
18
L I 9 I < I] I I

Figure 49: Transport control module, momentary pushbutton decoder schematic.

65

board space, this decoding will take place in firmware. A simple latching scheme is used to input
the data from the encoder. Figure 50 shows the circuit for the encoder. Note that the rotary
encoder present in the universal user interface section of the control board also connects to this
circuit.

ROTARY ENCODER

R2
2.2K

£

[6

J1 J2
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10

DIP HERDER 10
DIP HEADER 18

?ll

[
v
)
o
)
6

74L5373

[enc ens

Figure 50: Transport control module, rotary encoder interface schematic. This also acts as the interface for
the encoder on the universal interface module.

Three LEDs are present on the transport control module, to indicate various statuses. A
simple 74L.S373 current-sinking setup is used to drive these LEDs, as shown in figure 51.

66

€LESTIL
031
oo 9 T n:olvn__
VWV 'h_/; 20 p T
Lo 2bs
e o5 as [e
— AW 'h_{ > 0s oS |7 pErad
=1 04 [P—snq
2] za 5 0¢ ag [pTsnad
a3l 0z az p—snqd|
poe o ald Cop=snad]
Wy
N n N
13 10 33
[e]
C+
9 | B z

Figure 51: Transport control module, LED driver schematic.

67

A pair of 7-segment displays are present in the transport control module to display track
information. These displays are connected in a very similar fashion to those in the output assign
module. Figure 52 shows the schematic.

02
LED

| 04
LED
LED
DS
LED
o1t
LED
013
LED

LED

°7 Lk

first digit (T-segeat display)

7415247
7415247

u?
u?

10

(1]
3Q
4Q
sa
6Q
7Q
8Q

74LS373

D
D
30
4D
S0
6D
70
8D
c

cC
3|
4]
7]
s

ND

o

i
= | ©
BB R B B EL B c
JINI NN v
wlulafwulujulalw [l
HEHHEHHEE H
uln o nln al "
~
= T = T S T S T ™ T - T = T =

Figure 52: Transport control module, track select 7-segment display decoder and driver schematic.

Another four 7-segment displays are used in this module to display a time value. These
displays are connected in a similar fashion to the track indicator, with the exception that the
ripple-blanking and zero-blanking features are not used. Figure 53 shows the schematic used.
Two of these circuits are present in the module.

68

(Aeyds1p yuaubas-£) 1181p puosas

N9
031 031 M L92519L o
10 s10
.|'h 779 ° 11 05—
N _|m_0 4 183 D——
vh_{ —d3 osaia po—
a 8
S o LR
031 'h_{ Z1 u w T
1o | 3 z
N wn »
R R [
J3A
031 S
60 '«—r
031 b
[¢] 8a =
S+ =
ano
eLes1YL -
s
9 eua=Bas.]
08 a8 p—snqd
los a2 Lsp=snad]
= 0s 097 p-snad
> os as 7 p-snad|
oy 0 p—=nad
oe ae p-snad
w 0z az M p-snqd|
=sn
ons o arg Copsnad
n
031 azr, 4% Lazsie © en ©
L0 L
90 J0A
.|vh +d @ 11 p—
) _|nn_ 4 188 p——
'h_/; =q3 oswig p——
a 8
LERI ﬂo 3 ; w
a31 'h_{ 7] 8 M
10 | e A
031 { en n
€0 L
J0A
a31 ™
za '«_r
g3 A
o 1a
G+
| L | 9 c | B z

Figure 53: Transport control module, time indicator 7-segment display decoder and driver schematic.

69

6.1.4 TUniversal User Interface and Cue Stack Submodules

As previously mentioned, the rotary encoder present in the universal user interface section con-
nects to the transport control section. Figure 54 shows this connection and the associated circuit.

ROTARY ENCODER

6
J2
1
2
3
4
S
6
7
8
9
10

DIP HEADER 18

= T = T S T S T ™ T = T = T =

Figure 54: Universal user interface submodule, rotary encoder schematic. This circuit connects to the
transport control encoder interface.

The universal user interface module also contains a pair of pushbutton switches. These
switches interface to the output assign board, as shown in figure 55.

70

SV_PUSHBUTTON
SV_PUSHBUTTON

2.2k

CONN1®

Figure 55: Universal user interface submodule, momentary pushbutton interface schematic. This circuit
connects to the output assign button interface.

71

The cue stack control section contains three pushbutton switches that interface to the output
assign module. Figure 56 shows this connection.

©
~
-
= = =
8 E. |8
- ~N m
@ 5 a4 50 05
™ o @ «©
L :ids:
:
x o © ® = H
2 5 =18
BN > = =
» z 3 5
%
- z VW
2d
VAN
&
2o VAN
o o~
.
s
s
| [
- z
S [camewnonoos |3
-
~
< | @ | o | =) | w | [| © | ES

Figure 56: Cue stack submodule, momentary pushbutton interface schematic. This circuit connects to the
output assign button interface.

72

6.1.5 Microcontroller Module (pbus and LCD interfaces)

(to be converted from paper documentation from Axiom.. also need schematic capture of 8255-
based Pbus controller, which is on paper only)

6.1.6 Power Supply

An off-the-shelf switch-mode power supply is used, thus no schematic is present. The supply
provides +5V, and £12V.

73

6.2 Mixer Unit
6.2.1 Audio Input Modulel L

HOR

PIN DIP

16

Additional inputs —

0
o
=
@
F
S
I
@
i}
e}
w
=4
<]

=
=4
5
5
a
]
]
g ¢
o @
S a3 2
E S =
=28 3
T84
T3
23882
£ 5 8 x
S 28 F
3
S 25
sg35% ¥
= o B > s
" E O * =
0 25 8 3
s s S
g 3 -
0 2 8 32 *
@ £ =
D2y <
EZE3 e
O TTo 6
= T S
—— [——— A
°
i 0 S
i i 8
H H =
g 2 =
= = e
= = <
< 2 o

Figure 57: Audio input module, line receiver, buffer, and gain adjust schematic (2/8 of module).
This is the original design for the audio input module. Through clever use of a normalling

jack, either balanced or unbalanced signals may be input. Capacitive coupling is used to remove
any residual DC offset from the input.

74

A trim stage, based on the Dallas Semiconductor DS1800 digital potentiometer, provides audio
trim capabilities. Unfortunately, when this circuit was designed (and later fabricated), it was
not known that the DS1800 is not a bipolar device, thus it is inappropriate in this situation. For
the prototype, this functionality was sacrificed, but a stock of National Semiconductor LM1972
bipolar digital volume controls was obtained. At some point in the future, the circuit will be
redesigned using this part.

6.2.2 Audio Mix Module

The mix module, the central component in the mixer unit, is actually fairly straightforward.
Each module contains four of the Analog Devices SSM2163 8-to-2 attenuating mixer chips.
The eight audio inputs on each of these chips are connected to the audio input buses, in a one-
to-one fashion. The left output of each of the chips passes through a resistor and on to one of the
output buses. The resistor is present here because of the reconfigurable mix architecture. The
outputs of several chips are combined (either with the bus combiner/switcher module, or by the
presence of several mix modules in the unit). The combination is accomplished through the use
of a standard op-amp summing circuit, present on the input stage of the audio output module.

Figure 58 shows 1/4 of the audio connections for an audio mix module. An entire module is
simply this same circuit repeated four times, with each output connected to a separate output
bus point.

As in other DACS modules, a standard 16V8 GAL is used for address decoding. Figure 59
shows the pin assignments for the GAL. The VHDL code used to generate the GALs is included
in the appendices, on page 230.

Such that all mixer chips on a module could be simultaneously, yet individually programmed,
their data and enable inputs are all connected to a 741.S373. All clock signals are tied together,
and to the Pbus master clock signal through a pair of 74LS04 inverters (acting as buffers in this
case). This means that on any given write cycle, four mixer chips may be programmed at once,
but if the need arises, a single mixer may be programmed without disturbing the other chips.
Figure 60 shows the digital schematic of the mixer module.

6.2.3 Bus Combiner and Switcher Module

Relays were chosen over an electronic switching scheme for reasons of cost and simplicity. Many
types of audio-quality electronic switches exist, but most are rather expensive. Additionally,
many have limitations such as operating voltage ranges, latch-up problems, etc. Relays are
inexpensive, and do not have these limitations. However, relays consume a fair amount of current,
and depending on the type, they may not switch silently. These limitations seem to outweigh
the potential problems involved with electronic switches, however.

To switch the source of the second input bus between the second group of inputs and the
first group of inputs, four DPDT relays are used. The normally-closed portion of these relays
connects the second bus to the second group of inputs by default. Figure 61 shows the schematic
for the audio portion of this circuit.

In a similar fashion, the source of the third input bus is switchable between input group one
and input group three. Four DPDT relays are used for this switching, with the normally-closed
portion defaulting the switcher to group three. Figure 62 shows the schematic for the audio
portion of this circuit.

Lastly, the source of the fourth input bus is switchable between input group four, and the
input bus two. This allows the fourth input bus to be sourced from the fourth, second, or first
input group. Figure 63 shows the schematic of the audio portion of the circuit.

In addition to switching the input buses, the output buses can be combined, down to just four
outputs. This is done in only two steps. Combining the first output bus with the second output
bus reduces the number of outputs to from sixteen to eight. Further combining the top four with
the bottom four lines reduces the number of outputs to four.

75

0) WoIyse) |8I1)Uap! U1 Pajoauued s)ndyno Jybiy

SEIITHSS Jaylo wody

3|qissod s diyd o) 35019 se Jay)abo) par) ss| pue g

it schematic (1/4 of module).

1rcu

76

ix module, analog ¢

10 I

334 SSA (ONOU ONSO
- woz:wL‘z 14‘(‘4‘1
N N
MO8
)Ny waysAg 57
Pl7
RAILLE 57
ul 39019 97
3 1no eyeq vl eieqg 7z
(Pl121ys) OIN €7
(P1314s) ON =
— (P131ys) ON ==
,\/\/\(,wx (PI13!ys) ON B
|_] 3 inop (PI13!ys) ON 6]
WAy
8UIA [
W gurn [0
quIA 87
,\<<(q 1noj SUIA
iT] 37]
YA o
gulA [
ZutA
TutA NM
1100419 Jndyno vo due do Buiwens o) s)ndur aue SuD)sISaY N ;—rm n
PPA o0\

3|q1ssod s d1yd 0} 35019 & Jay)abo) pal) 39| pue ppy

Aud

Figure 58

— i

8A91H9 14‘1

sS)

s

Z]

E1]

|

|

|

~

®

o

| afo|+|n| o]~ [o|o

S)1dA/pesd sngd]

Figure 59: Audio mix module, address decode GAL.

7

€91ZUSS |eval)ippe 0}

Pl+311JH™4-EQ]ZUSS

BlepTy-ggizuss

Pl+3)} 1dn"g-ggjzuss

e10p—g-ggizuss

Pl+3) 1 JNTZ-E91ZUSS

BlepTz-ggizuss

390 [0~ £912uSS

E€LESTYL
34 SSA ON9Y ONSO
= mw_N:mL‘z H{ 14”.
= - 7 08 s
:ouxﬂ 37 0L [
ayny wa)sAg bz = 09 e
0s L]
2l &0 :
21197 m«|~. 5 0¢ 8
ul 39019 oz S 0z 18f
£ ino ejeg u| ejeqg Iz Z ot [
(P1214s) ON £z zn
(P1214s) ON 1z 294
(P131ys) IN 3
(P131ys) IN g
=5 ¥ A (P1214s) ON —
8UIA anN9 aNg
Al
LYUIA i Y0S74L AT Y0S7YL AT
SuIA
81
73] 1 AneA SUlA =5
FUIA T T 7 T 39010-snad]
EUIA Z
ZUlA FzZ - -
TUIA = aen |+ ven |+
- J0A J0A
- s
1 ;—r m
PPA 99N
L [9 [Y [€ [

t schematic (1/4 of module).

ital circui

1€

ix module, di

Audio m

Figure 60

78

10407487133
2 E
'
T
]
2
=
10407487133
€3 m
'
T
(s4exiw 0}) Z sN@ LNdNI | 1 S08 106N
— st 91 _Hw —— 9T §1 [—
—fer 41 $1 81—
— oz 10407A87133 (AR
—6 o1 o1 6 |—
— ¢ 8 8 L
g 3 Huﬁw 9 s —
— € L] o I L] e —
e . 14 1
1T
]
er r
2
=
1040~A8713Y (sindui wouy) z sN@ LNANI
Hu%w 91 &1 |
$1 €1
12 S [A SN I o
H 1 6|
“nw 8 L=
H 9 s —
_M ¥ e —
z 1
i
1138 w3y | snq jndut = 7 Sn
I Z I L] I £ I z

Figure 61: Bus switcher module, audio bus switching scheme for input bus 2.

79

10407487133
2 E
'
T
]
2
=
10407487133
€3 m
'
T
(suexiw 0}) € sN@ LNJNI | 1 S08 106N
— st 91 _Hw —— 9T §1 [—
—fer 41 $1 81—
— oz 10407A87133 (AR
—6 o1 o1 6 [
— ¢ 8 8 L
e 3 Huﬁw 9 s —
— € L] o I L] e —
—1 14 ¢ ‘r
1T
]
er r
2
=
1040~A8713Y (sindui wouy) € NG LNJNI
Hu%w 91 &1 |
$1 €1
12 S [A SN I o
H 1 6|
“nw 8 L=
H 9 s —
_M ¥ e —
z 1
i
I Z I I £ I z

Figure 62: Bus switcher module, audio bus switching scheme for input bus 3.

80

10407487133
2 E
'
T
]
2
=
10407487133
€3 m
'
T
(s4exiw 01) ¥ sN@ LNJNI ! (42423 1ns J214e) Z SNE LNANI
— st 91 _M 91 Sl —
—fer 41 $1 81—
— oz 10407A87133 (AR
—6 o1 o1 6 |—
— ¢ 8 8 L
— s 9 & _ 9 S —
— € L] o I L] e —
e . 14 1
1T
]
er r
2
=
1040~A8713Y (sindui wody) ¥ SN@ LNJNI
% 91 &1 |
$1 €1
12 S [A SN I o
H 1 6|
“nw 8 L=
H 9 s —
_M ¥ e —
z 1
i
s = 4 snq yadul
I Z I I £ I z

Figure 63: Bus switcher module, audio bus switching scheme for input bus 4.

81

As in the other portions of the bus switcher/combiner module, DPDT relays are used for
switching. Four relays are used to combine the first and second output buses. The normally-
closed sections of the relays aren’t used, while the normally-open sections are used to connect
the respective lines of each bus together. To connect the first four with the last four, a pair of
DPDT relays are used in a similar fashion. Figure 64 shows the schematic for this circuit.

J2
OUTPUT BUS 2

RELAY-DPDT.

RELAY_DPDT
RELAY_DPDT
RELAY_DPDT
RELAY_DPDT
RELAY_DPDT

K2

8 output bus vhen active

a1
i
K?
i
i
K?
AN
i
K?
H
i
K?
-
N
i
i
K?

4 output bus vher sctive lvith sbove)

Ji

OUTPUT BUS 1

= T = T S T S T ™ T = T = T =

Figure 64: Bus combiner module, output bus combination schematic.

As with other Pbus modules, a standard 16V8 GAL is used for address decoding. Figure 65
shows the pin assignments for the GAL. The VHDL code used to generate the GALs is included

82

in the appendices, on page 231.

rly ena)
pbus sense

—im

®|e[o|wf«

3
12
1

_______ ot @
2
cccceeco |4 |
0 ER
o7 z
o~ ©
"
@1 !
Y Y O i
|
+| 0]
S0 e x| x| el
.
<l
NREEEEEEE
3| v
| 5| w|] o] o] o] |
wlol 33313333
cjajojojojojojolo
—°|°|°|°|°l°|°
w
5
2
Q|
= T = T) T = T w T ™ T = T =

Figure 65: Bus switcher/combiner module, address decoding GAL.
To drive the relays, a series of NPN power transistors are used. The transistors are driven by

a 741.S373 latch. Diodes are present across all relay coils, to prevent transistor damage due to
the inductive kick of the relays. Figure 66 shows the schematic for this circuit.

83

aNo
€LESTYL -
A A A A N
= 1]] 1] z = o
31| 04
09
o
= os
= 0+
=1 o¢
[ZAT IS 8zZidiL 8zZidIL LIATARY BZ1dIL 3 Mm
<o 40 €0 z0 10 z
A 1y o
811 $11 (131 91 z1
A3l 23] 61 3 &
911 z1 81 41
14 33 10 117 €a AR 3] 10
Y004NT $004N1 $004N1 Y004NT Y009NT
o)
c+
8 | L 9 | c ¥ | B

Figure 66: Bus switcher/combiner module, digital and relay driver schematic.

84

6.2.4 Digital VU Module

(Not yet fully designed; preliminary design on paper, not run through a schematic capture system
yet.)

6.2.5 Audio Output Module

The audio output module is fairly straightforward in that it has no digital section. Two varieties
of output modules exist: balanced and unbalanced.

The unbalanced output module uses 1/2 of an NE5532 dual op-amp as an output buffer/amplifier.
This same op-amp also acts as the summing amplifier, to sum the signals from all of the mixer
chips together. Figure 67 shows two channels of the unbalanced output stage in schematic form.

The balanced output modules uses 1/2 of an NE5532 dual op-amp as a summing amplifier,
to sum the signals from all of the mixer chips together. Two additional op-amps are used to
generate buffered and inverted signals, to provide a balanced (differential) output. Figure 68
shows two channels of the balanced output circuit.

NE5532 op-amps are rated to acceptably drive a 600 ohm load, thus conceivably making
the system capable of driving 600 ohm terminated lines. However, research ! suggests that
“the popular NE5532 dual IC, which is found in unbuffered form as a ‘transformerless’ output
amplifier in many low-cost designs, will show a significant drop in its maximum sustained output
level when terminated. The same IC coupled to a pair of high-current output driver stages, while
more expensive to manufacture, is a legitimate line power amplifier.” This is something of a
concern, but the specifications for this output module do not dictate that the unit be capable of
driving 600 ohm lines, as the maximum output level is specified in dBu, not dBm. The beauty of
the modular design of the DACS mixer shines through here, as an output module capable of more
effectively driving 600 ohm loads could be designed and substituted for this module. For now,
this is not a major concern, as the intended use is more for input into high-impedance devices
such as amplifiers, equalizers, etc.

6.2.6 Microcontroller Module (pbus and LCD interfaces)

(to be converted from paper documentation from Axiom.. also need schematic capture of 8255-
based Pbus controller, which is on paper only)

6.2.7 Power Supply

As specified, the mixer unit employs a linear-mode power supply. The choice of this type of supply
over a switching supply stems from noise problems associated with switching supplies. Since one
of the primary concerns with the mixer unit is eliminating sources of noise, this decision seemed
fairly obvious.

Ideally, all components in the analog sections of the mixer would be capable of working
with a single pair of power supplies, of an appreciable voltage (to maximize dynamic range and
headroom). Unfortunately, the ICs used in the audio mixer modules can not be run outside of the
4+ 7VDC region. This wouldn’t be a problem if it was not desirable for the mixer to be capable
of handling large audio signals (extending up to the +24dBu range). Thus, a split supply scheme
is used, as described in earlier sections. Input and output buffer op-amps run from + 14VDC
supplies, while the mixer chips (and some op-amps) run from + 7VDC supplies.

In addition to the analog circuitry present in the mixer, several digital and hybrid ICs are
used. Many of these ICs require a +5VDC supply, thus a separate supply for this is clearly
necessary. In addition to simply requiring a different operating voltage, it makes sense from a
noise standpoint to move the digital ICs on to their own supply. This way, any transients incurred

Ifound on http://www.pre.com/News/airtip15.html

85

10z
VWV
3]
LS AN
= o =
Sl L1/1 "
]
VRS NG
T
ain ©
eoe ZESSIAN
er 13
[e]
AYI+
yoz
VWV
1y
¥30Y3H d10 NId-91
rie — et o1 |-
° = — 41 €l |-
= —zt o -
= syndyna |ew
= (sndyna | o e |2
N —'8 L
SdL .4/1 s C
|] €
[3
z =
<|Wm| T +
€ I
vin o
eoe zessaN
o zy
o
AT+

Figure 67: Audio output module, unbalanced driver schematic.
86

nverting aml fier (- output)

LILLLL g
TTTTTTTT
T = T s T = T = T < T <

Figure 68: Audio output module, balanced driver schematic.

87

Voltage | Maximum Calculated Current (approx)
14V 500mAT

14V 500mA T

+7V 500mAT

el 500mAt

Table 1: Maximum calculated power supply currents. T 13mA maximum supply current for NE5532 dual
op-amp. Assumes full system with all balanced input and output boards. $15mA maximum supply current
for SSM2163 mixer IC. Assumes full system with sixteen audio mixer modules.

on the supply lines (reduced with copious amounts of bypass capacitance) do not make their way
into any audio path.

The bus combiner module presents yet another problem. The relays chosen for the module
have a very low coil resistance, on the order of 36 w. With several of these running at once, a large
amount of current will be drawn from the +5VDC supply. Thus, either the primary +5VDC
supply must be capable of supplying approximately 3 amps of current, or a secondary +5VDC
supply must be employed. At the time of this writing, a secondary high-current +5VDC supply
is being planned.

The design uses standard LM317/LM337 adjustable regulators for the audio circuitry supplies,
and the venerable LM7805 for the digital circuitry. The LM317 is a positive voltage three-
terminal “adjustable” regulator. The LM337 is its sister part, and is a three-terminal negative
voltage regulator. These components work by keeping a constant 1.25 volt difference between
their output and adjust terminals. Equation 1 is used for determining component values for the
output voltage.

Vour = 1.25((1 4 (R2/R1)) (1)

R1 and R2 refer to the resistors shown in the schematic in figure 69. Note that in the
schematic, R2 is a trimmer potentiometer. The surround capacitors, C5 and C6 in the diagram,
provide additional ripple rejection. The data sheet claims up to 80dB of ripple rejection using
this scheme. Diode D2 acts to protect the regulator IC from capacitor discharges.

The remaining regulator circuits (utilizing U2, U3 and U4) are all similar. The circuits
utilizing U3 and U4 are negative supplies.

Each LM317/337 is capable of supplying a regulated voltage at 1.5 amps. This is more than
adequate for each supply voltage. Table 1 shows maximum calculated currents for each supply
voltage. These figures were obtained from maximum supply current specifications from data
sheets. Maximum supply current figures were then multiplied by the number of ICs of that type
used on each power supply.

88

oUTE
COMMON

L7805
IN

1

cLe
8. 1uF
c
8. 10F

I
-

I
I
1

13

|

1

28 BRIDGE
01

1A BRIDGE

06

38VCT

st o gw

IEC POVER ENTRY W/FILTER
J
@

3 T @ T =] T =) T] T [T =3 T

Figure 69: Audio mixer unit, power supplies for analog and digital circuitry.

89

7 Hardware Verification

7.1 Control Board

The control board is a relatively simple device, not involving any complex state machines or
the like. Very little simulation was carried out, or, in the end, needed. The produced hardware
functioned as designed.

For the VHDL designs present in the control board (and in the mixer unit), the Cypress Warp
VHDL simulation tool was used. This simple tool allowed logical checks of the VHDL to be made
before the GALs were burned. Figure 70 shows a screen shot of one such test.

[®] Mova: input-1 Device: C16VEA

= I =

Figure 70: Screen shot from the Cypress Warp VHDL functional simulator.

7.2 Mixer Unit

(Note: the postscript output from the Spice simulation package was, for some reason, not com-
patible with IZTEX . No amount of reprocessing was able to make the files directly importable,
thus, printouts from Spice are included at the end of the report and appropriately labeled.)

7.2.1 Balanced Audio Input Module

Transient, frequency, and noise analyses were performed on a PSpice model of the balanced audio
input circuit.

The first simulation run was a transient response simulation. Plotting the pair of input
voltages (sine waves, inverses of each other) and the output voltage shows that the circuit does,
indeed, properly receive a balanced audio input signal. Also shown is the gain feature of the trim
stage of the circuit, here set to a gain of 4. Refer to the attached PSpice plot entitled balanced
audio input - gain of 4.

90

Since one stage of the input board is capacatively coupled to the next, to remove DC bias
voltages, frequency response simulation was carried out, to ensure that the high-pass filter was
designed properly. The specification for the mixer unit dictates that the unit be no more than
3dB down at 20Hz. The simulation shows that the low-end 3dB point of the input circuit is at
around 17Hz. Refer to the attached plot, entitled balanced audio input frequency response.

Lastly, an input noise analysis was run. This was done to gain data for later noise analysis.
Unfortunately, at present, an NE5532 model for PSpice is nowhere to be found. This noise data
is for the 741 op-amp. Still, it provides at least some indication as to the noise present. Further
analysis will be done when the proper Spice model has been obtained. Refer to the attached plot,
entitled balanced audio input, noise analysis.

7.2.2 Unbalanced Audio Input

While there is no unbalanced audio input module in the system, per se, an unbalanced signal may
be connected to the system. A transient analysis was done of this situation, to show that it does,
indeed, work properly. The attached plot, entitled balanced audio input board, w/unbalanced
input - transient shows the response.

7.2.3 Balanced Audio Output Module

(Refer to the attached PSpice schematic, entitled balanced audio output schematic)

The first simulation run was a transient response test. Plotting the input voltage (a sine
wave in this case) against the pair of output voltages (the differential pair) shows that the circuit
does, indeed, function as designed. Refer to the attached plot, entitled balanced audio output -
transient.

A frequency sweep from 10Hz to 30KHz was performed, to observe the frequency response
of the circuit. Predictions said that it should be relatively flat in this range, and indeed this
was shown. While some rolloff starting around 8-10KHz is shown, the rolloff is in thousandths
of volts. PSpice’s automatic zoom feature makes this rolloff look a lot worse than it actually is.
The attached plot, entitled balanced output - freq response, shows the response.

Lastly, a noise analysis (again, with the improper PSpice op-amp model) was run, to obtain
data for later noise analysis.

7.2.4 Overall Noise Analysis

Overall system noise was “budgeted.” It was understood that each component in the audio path
contributed to end-to-end system noise. Care was taken to choose components with low noise
specs, and use those components such that the noise specifications were met. Where possible,
PSpice simulations were carried out to get a feel for the noise behavior of small subsystems.

There are two known noise problems with the prototype. There is a -50dB noise floor inherent
in the system. Due to time constraints, no real investigation of the source of this noise was
possible, though some theories have been proposed. In addition to this noise floor, digital “hash”
from the internal microcontroller is being picked up by the system. This will likely be remedied
with some shielding and more supply bypassing.

7.2.5 Total Harmonic Distortion Analysis

Rather than spending inordinate amounts of time performing THD analysis, as much care was
taken along the design process to choose components with respectable THD specifications. To
make sure these specifications were met, as much care as possible was taken to ensure that the
parts were operating within specifications. Due to the time constraints on the project, it is felt
that this was a reasonable method.

91

8 Hardware PC Board Designs

The PC boards were layed out directly from the schematics developed in previous sections. No
auto-routing was used during the layout process, mostly because it was not entirely trusted. This
is especially true in cases where audio signals and noisy digital signals share board space. Another
point in favor of manual layout was that many of the parts had to be in specific positions on the
PC board because of panel-mounting, etc. With many specific parts positions, some auto-routers
become confused and produce routing of poor quality.

Many parts were chosen that were not in the default PowerPCB library. This required creating
a custom library of parts. Once a stock of parts was on hand, a caliper and fine-scale ruler were
used to take measurements of pins and case sizes. These measurements were used to construct a
component layout for the custom parts library. To be sure the appropriate modeling was done,
a real-size version of the part was printed and fitted with the actual part. Any variations or
discrepancies were then fixed.

PADS Software’s PowerPCB software was used for all board layouts. Once boards had been
designed, proofed, and test-fitted, Gerber output was generated. Separate Gerber files are pro-
duced for top and bottom routing, solder masking, drilling, and silkscreening. All Gerber output
was checked with GCPREVUE, a freeware Gerber viewer. Once convinced of the quality of the
output, the Gerber files were sent to the PCB house via the Internet.

EP Circuits, a fabrication house located in Canada, offered the best price/performance ratio
for board prototyping. It was decided that all boards in the mixer unit would be treated with
solder mask, mainly because of the use of surface-mount components that were to be hand-
soldered. All boards produced for the control board did not have solder masking applied. This
was done in an attempt to save precious development funds.

8.1 Control Board

Three PC board designs were created and manufactured for the control board. The remaining
boards, such as the Pbus controller, were hand-wired to save money.

8.1.1 Fader Module

Two fader modules are present in the prototype control board. They are identical boards with
different GAL programming and jumper settings.

Figure 71 shows the silkscreen/assembly layer for the fader board. Table 2 shows the bill of
materials for a single fader board. Figures 72 and 73 show the top and bottom routing layers,
respectively.

8.1.2 Output Assign Module

A single output assignment module is present in the prototype control board. Figure 74 shows the
silkscreen /assembly layer for the output assignment PC board. Table 3 lists the bill of materials
for this board. Figures 75 and 76 show the top and bottom routing layers, respectively.

8.1.3 Transport Control Module

A single transport control module is present in the prototype control board. Figure 77 shows
the silkscreen/assembly layer for the transport control PCB. Table 4 lists the bill of materials for
this board. Figures 78 and 79 show the top and bottom routing layers, respectively.

92

r

R8

R7

R6

RS

R4

R3

R2
R1

0

SO

O

O

—QAHMANMW

L66T 0€:G0:TZ TO IeW 3Jes - god- sispe3

Figure 71: Fader module PCB, silkscreen/assembly drawing.

93

REFDES | QTY DESCRIPTION
R1 - R8 8 ALPHA 500K slide potentiometer
R9 - R24 16 300 ohm 1/8W
C1 1 10uF electrolytic
C2-Ch 4 0.1uF monolithic
D1 - D8 8 Green T1-3/4 LED
D9 - D16 8 Red T1-3/4 LED
U1 1 GAL16VS
U2, U3 2 74L.S373
U4 1 CD4051
J1 1 20-pin DIP header
J2 1 10-pin DIP header
J3 1 16-pin DIP header or wire jumper
J4 1 4-pin 0.156in. power connector
Table 2: Fader module, bill of materials.
REFDES | QTY DESCRIPTION
S1-S18 18 E-Switch momentary PCB-mount pushbutton
R1 - R16 16 300 ohm 1/8W
R17 - R34 18 2.2K ohm 1/8W
Cl-0C9 9 0.1uF monolithic
C10 1 10uF electrolytic
D1 - D16 16 T1-3/4 green LED
D17 1 dual 7-segment green LED display
Ul - U6 6 74LS373
U7, U8 2 7415247
U9 1 GAL16V8
J1 1 20-pin DIP header
J2 1 4-pin 0.156in. power connector
J3 1 10-pin DIP header
Table 3: Output assign module, bill of materials.
REFDES QTY DESCRIPTION
S1-S7 7 E-Switch momentary PCB-mount pushbutton
R1 - R3, R11 3 300 ohm 1/8W
R4 - R10 7 2.2K ohm 1/8W
R1- R13 13 0.1uF monolithic
D1-D3 3 dual 7-segment green LED display
D4 - D6 3 T1-3/4 green LED
U1l 1 GAL16V8
U2 - U7 6 74LS373
U8 - U13 6 7415247

Table 4: Transport control module, bill of materials.

94

30IS LNINOdNOD

*r—e

sessaesaen

=))))

(XX XN NNY |
0000000 ——

doseen N \\-.||nnnu....i.

ARe00ccco0n

W ALLLLLLL]]

4

INYINIONI 4SS @ eeeeeee ® 0/00000000<| QeecoccoooY hd oo\o\ooooood
NOSQYYHIIY 'S £66} (J) LHINAJOD ° ° re— r s .
00°¢ A3¥ Q¥Y08 / 11 A3 N3HOS ———— o | a—

3INAON ¥30V4 L gre—
¥3TI04LNOD W3LSAS ZLI 300N SOVa

[

.
——+o o—o —o —e —e —e —e —e

L66T €Z°T0*TZ TO0 IeW 3es - god- sispez

Figure 72: Fader module PCB, component-side routing.

95

N

20rDEK 2IDE

e

2/

i

[X o]

i

17

JUUL]

L66T 6G:€0:T¢ TO XeW 3es - god-sispes

Figure 73: Fader module PCB, solder-side routing.

96

3

LIS

8lS

£10
915 83
GIS IS
15| 95|
€IS S
715 7|
TS £S5
1S S
65 19

89

U8

U7

U3

02

Y]

«©

«©

L66T €%:L¥:0Z IO IeW 3es - god-usse3ino

Figure 74: Output assign module PCB, silkscreen/assembly drawing.

97

e o
:OHOH\O|0) ° e
*—4e \\”m\ e _o
£|0 ° IL Nﬁo
.|.\H.IJ *—e .\.J *—e
L)

outassn.pcb - Sat Mar 01 20:46:05 1997

'........* '........?
———0

........“—0!......,.“—0 !......!.k

'........,

—o *—o —o o —e *—o —eo —o
~—e v——*lrﬁ—a ¢ " _ o [] [N [
o—'oo'ﬂ/o
(X} (X} (X} 00 oo %0 ° oo _ o
. l *
—eo—o0—0 0000000900000 —eo—o
—o —e —e

._1r::: =% o9 _% 9o oo oo oo o
o o2 ® 0 ® . . °
'Y ') ') ' o0 o0 e _ oo
— o . . o
e - *e
gQececcccee gecccscces ® geccccccee gecccsee geccccce
heosscccceed Heosscocedd i:ooooooo&o !oo,‘oo‘*uooo?oo
8 ~— — *~— o 'c'o—TT—————o e
é T ———— = —* 5 * — :;o
= ° i ° N P——

Figure 76: Output assign module PCB, solder-side routing.

99

Sat Mar 01 20:58:28 1997

transport.pcb -

I?I
b=

RN 54
S

64

D2

S3

R7

1
—

L
L

@xz

Figure 77: Transport control module PCB, silkscreen/assembly drawing.

100

— 3 $ }
. Nt . —: . —
—e e oo ® ® 2 = ——o
° *—e ° *—e * — o - *~— [—
” M M 0(IO|\ o oo *——4 *———o —¢
*—e *—e [) *—e @ .4 . 2 [o—)—— 0—@
—e o—e - - *~—¢ —o o—o
—_o—~ —e [C — —eo—o
[[] °] [——e0o—00
Q o | / Q| / ¢y [) —eo0
@ 2 d .|.—.|.—
\ / [] [) [) [)
\. @ ——e *—e
TO/A —e ———o o ¢ °
—e [] *——e
e " —e e o °
® [4 (2] *—o
[] [—e
i
«—e
— o
[

101

ol module PCB, component-side routin

Figure 78: Transport contr

transport.pcb - Sat Mar 01 20:55:17 1997

3012 230102 C

o . — @ oo
e oo secccsge s
—e K- . ; T —e
—s L\ meocoeoe To:oooo:ol—A._.
s . °
— o
—o
°
°
——eo—o—o :_. :°—.I [y Y S Ps
geccccoloegscccccee geoccccce 'TYPYYYYYYY
A TYYYYYY) meoceooed meoocced " e
——5° ¢ — .
o ® ® oo oo 0000000006 °
— ———F o
T e . — 'TYYYYYYITY)
—— * ° —o [J
—s —_ $ oo
———9000é0000 =)
.—/.0—/1....._. 2, ° .
— ° Py
o, o —eo
o L Kooooooo 0
|._:| ,—\{ .I \° ! ;‘....... / !ooooooool
oo o
f—iete,

Figure 79: Transport control module PCB, solder-side routing.

102

REFDES QTY DESCRIPTION
R1 - R32,R34,R37,R40,R43,
R46,R49,R52,R55 40 20K 1% metal film
R33,R35,R36,R38,R39,R41,R42,
R44,R45,R57,R48,R50,R51,R53,
R54,R56 16 10K 1% metal film
C1l-C8 8 0.47uF metallized polyester
C9 - C33 24 0.1uF monolithic
C34 - C38 5 10uF electrolytic
Ul - U12 12 NE5532
U13 - U16 1 DS1800 (not used, mis-design)
u17 1 GAL16V8
U18 1 74LS373
J1-7J8 8 Re’an 1/4 inch PCB mount switched jack
J9 1 16-pin DIP header
J10 1 Molex Mini-Fit Jr. 8-circuit right-angle
J11 1 20-pin DIP header
Table 5: Audio input module, bill of materials.
REFDES QTY DESCRIPTION
R1- RS 8 10K 1% metal film
C1-C10 10 0.1uF monolithic
C11,C12 2 10uF electrolytic
Ul-U4 4 SSM2163 (SOIC-28)
U5 1 GAL16VS
U6 1 741L.S373
ur 1 74L.S04
J1-J4,J7-J9 8 16-pin DIP header
J5 1 Molex Mini-Fit Jr. 8-circuit right angle
J6 1 20-pin DIP header

Table 6: Audio Mix Module, bill of materials.

8.2 Mixer Unit

Four PC board designs were created and manufactured for the mixer unit. The Pbus controller
and power supply were hand-wired to save money.

8.2.1 Audio Input Module

Four audio input modules are used in the prototype mixer unit. Figure 80 shows the silkscreen/assembly
layer for the audio input PC board. Table 5 shows the bill of materials for this board. Figures
81 and 82 show the top and bottom routing layers, respectively.
It should be noted that, due to an oversight in design, the volume trim portion of this board
is not functional. The DS1800 IC’s are replaced with fixed resistor values in the prototype.

8.2.2 Audio Mix Module

Four audio mix modules are used in the prototype mixer unit. Figure 83 shows the silkscreen/assembly
layer for this PC board. Table 6 shows the bill of materials for the audio mix board. Figures 84
and 85 show the top and bottom routing layers for this board.

Note the presence of surface-mount components on the top routing layer.

103

mix-bal-input.pcb - Sat Mar 01 20:29:47 1997

5
Lo
—
© __
5 B
o
Lo
~ Lo
—]
z —
-
=~
- 5| =
Bz
Bron s
Lo
]
o (S = 8 —]
o |C —gTa- o — o ° —
= Bravisy 5 S —
Q,TI_A_-@ISJ—
S0 F]
T 5
-z i
o+ Biavin § 9
(=]
S T = =
— Lo
7= JER——
85— 8 — =

Figure 80: Audio input module PCB, silkscreen/assembly drawing.

104

ONINIINION3 ¥S i u“ Aol
zome_éo_m S N3HdALS

1661 (2) LHONAOD R\
¥0°T A3y Q¥vos / 4 NIHOS | o o\ol [XXXXXXXXX]I NIK) ..
ox<om5n_z_o_o:<auoz<._<m

Y3IXIN 010NV Ly T3I00N SIVa }OOOOOLO& 00\...000& + /

oooo.)oooo? ooooa.ooooo>ooooa.ooooo\f ooooo.ooooo

ooo>ooooo\ ooogoooozi “oo>ooooo< ooo ooooo

Heo—

+

i

N/
e\
.|/|\|.\./¢ f&.~

13\\1\&.&&13\\13\\1\13\.22

F
I
(<
L/ /

3QIS LN3NOdWOJ

....ﬁﬁﬁﬁﬁﬁﬁr.

TR

L66T 9%:9C:0C TO IBW 3eS -

god-anduTt-Teq-XTW

Figure 81: Audio input module PCB, component-side routing.

105

3Q1S ¥3Q70S

,;

. LX) F...I

el ?.HH..:..H?.:..K. Hm.
ﬁ § ﬁ JJHJJ,“JJ_

L66T LT:8C:0C TO XIBW 3€S -

god-anduTt-Teq-XTW

Figure 82: Audio input module PCB, solder-side routing.

106

mixer-board.pcbh - Sat Mar 01 20:34:42 1997

——— -)
1 H [B =
= o
@ o
45N
= =
[citem| - =
s
=
L =
o
5
=
S
—= =
= ~
cg [—
R il
1
e
N - -

Figure 83: Audio mix module PCB, silkscreen/assembly drawing.

107

A

— 2 Wl __ iy : iy

I,

opeps

o
seseuse 3 pébe \\II&;

I...ﬁ.-

i
s

A

00O X

INIYTINIONI ¥S / NOSGHVHOY S N3HdaLS L661 (3) LHOINAAOD
0°L A3Y QU0 / 01 A3 N3HOS < JINCON XIN * ¥3XIN 010NY Iy 300N SOVA

L66T TF:TE:0Z T0 IeW 3eS - god paeoq-IoxIw

Figure 84: Audio mix module PCB, component-side routing.

108

pewp ® —

20rDEK 2DE @ ry

s000000dse 4

deee > s .- .
mese J L : i.ﬁg

L66T 0€¢€:0Z TO XeW Jes - god:pieoq-IsxTw

solder-side routing.

Figure 85: Audio mix module PCB,

109

REFDES | QTY DESCRIPTION
R1-R5 5 1K ohm 1/8W
C1 1 10uF electrolytic
C2,C3 2 0.1uF monolithic
K1 - K18 18 PED DPDT 5V coil relay
D1 - D5) 1N4004
Ql-Q5 5 TIP120
U1 1 GAL16VS
U2 1 74LS373
J1-J9 9 16-pin DIP header
J10 1 Molex Mini-Fit Jr. 8-circuit right-angle
J11 1 20-pin DIP header
Table 7: Bus combiner/switcher, bill of materials.
REFDES QTY DESCRIPTION
R10,R12,R14,R16,
R18,R20,R22,R24,
R1 - R8,R33 - R40 24 10K ohm 1% metal filmf
R9,R11,R13,R15,
R17,R19,R21,R23 8 20K ohm 1% metal filmf
C1,C2 2 10uF electrolytic
C3 - C22 20 0.1uF monolithic
Ul - U8 8 NE5532¢
U9 - U12 4 NE5532
J1-J8 8 Re’an right-angle PCB mount XLR 1
J9 - J16 8 Re’an PCB mount 1/4 inch switched
J17 1 16-pin DIP header
J18 1 Molex Mini-Fit Jr. 8-circuit right-angle

Table 8: Audio output module, bill of materials. 1 For balanced configuration only. IFor unbalanced
configuration only.

8.2.3 Bus Combiner and Switcher Module

There is a single bus combiner board present in the prototype mixer unit. Figure 86 shows the
silkscreen/assembly layer for this PC board. Table 7 shows the bill of materials for the bus
combiner board. Figures 87 and 88 show the top and bottom routing layers.

8.2.4 Audio Output Module

There are two audio output modules present in the prototype mixer unit. In the prototype, one
board is configured for balanced audio while the other is configured for unbalanced audio. One
single PC board design is used for both of these. Pads are available for 1/4 inch jacks and XLR
jacks. Unbalanced boards require less components. This design was the most efficient possible
for this situation.

Figure 89 shows the silkscreen/assembly layer for this PC board. Table 8 shows the bill of
materials for the audio output board. Figures 90 and 91 show the top and bottom routing for
this board, respectively.

110

bus-comb.pcb - Sat Mar 01 20:22:05 1997

[4%

li:

€3 C2

1%}

Uz

OLY

1

D2

0

83

J5

LA

8

@xs
o U UyeLge e e
|t
@x1

9

K17
oy [g [

D3

o | | K16
— =
B 5
| , K15
€A 5]
L 2 ©
2 ' @ ' K14
1 =
- =+
=]
Y —
=S =
R I 1 oo
L | L

Figure 86: Audio bus switcher/combiner PCB, silkscreen/assembly drawing.

111

INTINION &S

secooe 305 ININOANOD |

PPt b NOSBVHO ‘SNHEILS geeeee®e o\

° 1661 (2) LHII¥AA0D
007 A3¥ 04Y08 / 01 ATY WIHOS
00 JINCON YINISHOD Sn@
00000000N po om ¢ \ Y3XIN 0IONY Ly TICON SOVQ

ﬁ o |o

[] []

-

.D.%.E:i@ [

Hoeoooo000 Hoeoooo000 H0000000 HOOGOOOOO

L66T ¥9:6T:0C T0 XeW 3es - god quod-snq

Figure 87: Audio bus switcher/combiner PCB, component-side routing.
112

(XXX OXXY]

W]

?

20rDEY 2IDE

L66T SE€:0T:0T TO XeW 3es - god quod-snq

Figure 88: Audio bus switcher/combiner PCB, solder-side routing.

113

ur or
©) w0 =

N=

129 619
an I % 3] @ 6 14
029

w

e ol o e e
o oy ey
o F B E R b B R b g

[I o [[o o Ir

ar gir e fir ur n or 6r

L66T 9T*GT:0Z TO JeW 3Jes - god’ Tequnreq-3ndino

Figure 89: Audio output module PCB, silkscreen/assembly drawing.
114

301S IN3NOdW0D

Ty °

INIYIINIONT ¥S

NOSGUVHOIY 'S N3HA3LS £66} (3) LHIIMAAOD

701 A3Y Q¥v08 / 0°) AY W3HOS

08v08 1ndLN0 0laY G30NVIvEN # a3oNvive
Y3IXIN 010NV Wy TI0ON SIVO
4 - V1 v,
4 It T] Ao It
QIK\HW, s —o . oll\Mw, I) QIK\MWV o —o o

ooﬂHo noﬂH. ooﬂHo ooﬂHo ooﬂHo ooHHo noﬂH. —o&Ho
W ZRI AT ZRT 2R ZRT R 70

GG

L66T €T:85°6T T0 TN

3es - god: Tequnieq-3ndino

Figure 90: Audio output module PCB, component-side routing.

115

output-balunbal.pcb - Sat Mar 01 20:00:31 1997

® 20rDEK 2IDE

Figure 91: Audio output module PCB, solder-side routing.

116

9 Hardware Chassis

Since the prototype hardware was constructed, layouts for the chassis had to be determined.
The prototype hardware is not entirely well-laid out for volume manufacturing. The chassis
designs are a compromise between mass-production designs and debuggable designs able to be
constructed in a modest machine shop.

9.1 Control Board

The prototype control board is built around a 17 inch by 13 inch by 3 inch aluminum box. The
fader, transport, and output PC boards are mounted to a piece of 1/8 inch acrylic, cut to fit over
the top of the aluminum box. The top is 19 inches wide, providing rack mount ears. The panel
jacks, CPU module, and Pbus controller board mount to the aluminum box.

Figure 92 shows the layout of the control board components.

cpu. pbus
output
graphics lcd assign transport
fader fader

Figure 92: Control board chassis layout, top view.

9.2 Mixer Unit

The mixer unit is built around an off-the-shelf 3 rack-unit chassis. The rear panel of this chassis
was removed and replaced with an aluminum frame to hold the removable audio input and output
cards. A rectangular hole was cut in the front panel to mount the LCD. The display is protected
by a piece of acrylic. Internal components firmly mount to the chassis.

Figure 93 shows the layout of the mixer unit components.

117

audio input boards audio output boards
(4x, stacked) (2x, stacked)

?
D
o
©
(@]
5
[%)] =
cpu & =3 %
_ g 5
pbus mix modules 3 S
(vertical)) = <

(4x, vertical mount) ’g

K=

bus comb.
Icd

Figure 93: Mixer unit chassis layout, top view.

118

10 High-Level Firmware Design

Firmware is simply the name given to software running on embedded microprocessors or micro-
controllers. What makes it “firm” is that it is typically loaded on to an EPROM or EEPROM,
rather than a form of magnetic media, though this rule does not hold hard and fast. The exact
function of firmware depends greatly upon the application. In standalone hardware, the firmware
often contains elements of a user interface, application logic, etc. In peripheral or support hard-
ware, the firmware often must handle communication with external devices in addition some of
the aforementioned tasks.

Both the mixer unit and the control board require firmware to handle the functions of the
underlying hardware. Since both units are peripheral-style hardware, the firmware needs to
handle all of the functions mentioned above. The control board is largely a user-interface device,
while the mixer unit is largely a task-oriented device. Both interface with a host PC running
custom software.

The following subsections give an overview of the firmware design for the DACS control board
and mixer unit. Later sections present the actual software architecture and source code.

10.1 Control Board
10.1.1 Design Overview

The firmware in the control board needs to handle serial communications, analog-to-digital con-
version, Pbus communication, and LCD output. Additionally, it needs to use all of these to
provide a user interface. Figure 94 shows a modular view of the required functionality.

serial communication

a/d conversion
program

logic
pbus control

lcd control

interrupt logic

Figure 94: Control board firmware, modular overview.

While all of the low-level hardware communication functionality is relatively straightforward
in concept, the user interface portion of the firmware is a bit more complex. For instance, a
decision had to be made regarding exactly how much intelligence to embed into the controller
itself, and how much to push to the software running on the host computer.

119

To aid further expansion and improvement of the user interface of the control board, a “master-
slave” approach was taken. It was decided that low-level user interface primitives shall be coded
into the firmware, but the use of these primitives shall be dictated by the software running on a
host computer. The only function breaking this paradigm is a minimalist interface for controlling

the DACS mixer unit in the absence of a host computer.

10.1.2 Overall Functional Design

SYSTEM RESET

initialize board . .
subsystems increase timer counter
¢ timer interrupt service LCD primitive
synchronize handler
with host PC
H fader primitive
yes yes
complete frame request LED primitive data to return data to serial
received? process frame ™= gispatch handler to host? buffer]
no ¢ no
. button/wheel
check timer primitive hdlr
. di h primitive menuing
timer dispatcl handlers primitive hdlr
LCD updates -
data to return data to serial
to host? buffer
button/wheel no
checks T

Figure 95: Control board firmware, intelligent mode functional flow diagram.

Figure 95 depicts a functional flow diagram for the intelligent mode of the control board
firmware. At system reset, all components of the system are initialized. At that point, a host
synchronization mode is entered, during which the host PC and the control board attempt to
communicate and correctly exchange information. Upon successful completion of this synchro-
nization, the control board sends configuration information to the host PC describing installed
options, etc.

At this time, the main program loop is entered. The serial devices are serviced, thereby
processing incoming and outgoing data. Should a complete frame of incoming data be received,
that frame is processed and interpreted. Assuming it contains valid command data, the command
is dispatched to the appropriate user interface primitive handler. For example, if a command is
received to generate a menu and return the chosen value to the host computer, the appropriate
action is taken.

In some cases, the primitive handlers immediately return data to the host computer, such as
in the case of reading fader values, etc. In these cases, the data are immediately inserted into
the serial buffer.

After processing incoming frame data, or after no data have been received from the serial
subsystem, the timer counter is checked. If this timer counter has reached particular cutoff

120

values, functions are executed. Some user interface primitives require periodic servicing, such as
the menu handling primitives.

After the timer routines are serviced, or if no timer routines are to be serviced, control loops
back to the top, and the serial devices are again serviced. This loop continues until the unit is
powered off.

Should, at any time, either the host PC or the control board become “confused,” the confused
party shall re-enter synchronization mode. Both the firmware and the host PC software shall
recognize, in normal operating mode, synchronization data coming from the opposite device.
This shall cause that device to also enter synchronization mode, beginning the cycle again.

The initial firmware developed for the board, and indeed, the only presently complete firmware,
implements a “dumb mode” of operation. Figure 96 shows a functional flow diagram of this
operating mode.

SYSTEM RESET

|

initialize board

subsystems
yes
~
\ output MIDI
fader moved controller bytes
/
no
update LCD

Figure 96: Control board firmware, dumb mode functional flow diagram.

Upon system reset, the various subsystems are initialized. At this point, the main loop is
entered. In this loop, all of the faders are polled. If any of these faders have changed since the
last poll, MIDI-like controller data are output on the serial port. This loop repeats until the
system is powered off.

This mode of operation is exceptionally limited, however, due to time constraints, the complete
firmware system for the control board was not able to be implemented as designed. It is believed
that the design is a good one, however.

10.1.3 Component Functional Design

User interface primitives perform functions such as changing the state of LEDs, changing the
contents of LCDs, displaying menu options on an LCD, and reading buttons or sliders. These
functions, called by the host computer over a serial linkup, work together to form the logic of the
user interface. Table 9 lists the user interface primitives.

10.2 Mixer Unit
10.2.1 Design Overview

The firmware in the mixer unit needs to handle serial communications, Pbus communication, and
LCD output. Figure 97 shows a modular view of the required functionality.

121

primitive input data output description
send fader values none fader value bytes returns all faders
(immediate)
send button values none button value bytes returns all buttons
(immediate)
send wheel counts none wheel count ints returns all wheel counts
(immediate)
since last poll
set LED values byte masks none sets LEDs on or off based on masks
set 7-segment display id and value none sets T-segment display to value
LCD string write LCD id, string, x, y none displays string at x,y on LCD
LCD bitmap display | LCD id, sx, sy, data none displays sx*sy bitmap on LCD
X,y at position x,y
menu handler menu items, type, item id scrollable menu handler
X,y (when selected) allows host to create menu options.

user selects, host is notified of choice.

text data entry

string length, x, y

string
(when done)

allows user to enter
string ’arcade style’

Table 9: Control board user interface primitives.

serial communication

pbus control

lcd control

interrupt logic

program

logic

Figure 97: Mixer unit firmware, modular overview.

122

In addition to handling the functions mentioned above, the firmware of the mixer must service
requests for mixer jobs. These requests arrive from the host computer via the serial communica-
tions module, and must be processed and executed.

10.2.2 Overall Functional Design

SYSTEM RESET

P { - increase timer counter
initialize mixer
subsystems timer interrupt service

{

synchronize
with host PC

—

serial service
yes

complete frame o
received? process frame | file job request T
no ¢
. yes
check timer _ : .
complete jobs for | job | | notify host data to serial
¢ this timer tick management about job? buffer
no
timer dispatch
update LCD

Figure 98: Mixer unit firmware, intelligent mode functional flow diagram.

Figure 98 depicts a functional flow diagram for the intelligent mode of operation for the
mixer unit. At system reset, all internal subystems are initialized. System hardware is polled to
determine what options are installed in the unit.

At this time, the unit enters a host synchronization mode. During this time, the mixer
unit attempts to establish communications with the host PC. Once communications have been
established, the mixer unit informs the host PC of its configuration and enters the main program
loop.

The main loop begins with a serial device service routine. If a complete frame has been
successfully received, this frame is processed. Assuming the data are valid, the job request from
the host PC is entered into the job queue.

Execution continues by checking the timer value. If the appropriate amount of time has
passed, all pending mixer jobs for the current time slice are serviced. Maintenance of the job
tables is then completed to remove completed jobs and updating time-to-live values in unfinished
jobs. Should a job ending require notifying the host PC, the data are output to the serial buffer
at this point.

The status LCD is updated with current information periodically. This action is serviced by
the timer dispatch. After timer processing, execution loops back to the top. This cycle repeats
until the unit is powered off or reset.

Should, at any time, either the host PC or the mixer unit become “confused,” the confused
party shall re-enter synchronization mode. Both the firmware and the host PC software shall
recognize, in normal operating mode, synchronization data coming from the opposite device.
This shall cause that device to also enter synchronization mode, effectively resynchronizing both
devices.

123

To facilitate testing, and produce a functional demonstration, an extremely stripped down
“dumb” mode of operation was implemented. Unfortunately, it is still the only functioning piece
of firmware at the moment, due to time constraints. Figure 99 shows the functional flow for this
mode of operation.

SYSTEM RESET

{

initialize mixer
subsystems

serial service

yes
\ .
MIDI controller set mixer
command recv? register value
/
no
update LCD

Figure 99: Mixer unit firmware, dumb mode functional flow diagram.

Upon system reset, the underlying hardware is initialized. Immediately, the system enters a
loop waiting for serial data. If a valid MIDI controller command is received, channel and value
data from that command are used to immediately set mixer registers. The system then returns
to waiting for another valid MIDI controller command. Periodically, the system LCD is updated
with simple status information. This loop continues until the device is powered off.

10.2.3 Component Functional Design

Mixer jobs may be requested by the host computer. These jobs complete in a finite amount of
time. They can range from simply setting a particular mixer register to a value instantaneously
to slowly fading sets of registers up or down over time. Several “slots” for jobs shall be available,
allowing multiple concurrent jobs that start and end at different times. Figure 100 diagrammat-
ically shows the mixer job engine. Note that the earliest free slot is always used for an incoming
job (the position of job 4 shows this well). The time scale used is of arbitrary granularity, and
should be chosen for convenience. A value of between 1/10th and 1/100th of a second should
suffice for this application. The specific granularity should be chosen with an eye towards human
perceptibility and microcontroller loading.

Several different types of jobs may be requested from the host, as shown in table 10. Some
of the jobs allow for a variable time-to-completion. This allows variable-length audio fades to
occur. Some jobs, mainly task management jobs, complete in a single time tick.

The mixer unit also has provisions for an add-on digital VU meter. This dictates that a
means for the retrieval of the VU data be available. In addition, information about the installed
modules in the mixer unit may be requested by the host computer.

124

Time unit increasing time

1 2 3 4 5 6 7 8 9 |10 |11 | 12 | 13 | 14 M
Slot 1 | jobid 1 [T
sot2| | |jobid2 | ! i [obida [!]
. slot 3 | | ‘ jobid 3 ‘ | |
]0bS|0t I i T T T N N T I T
slot 4 77:7”7177”:7”71”77:77”- ‘Job|d5 ‘71”77: 777777777 :”
sotn| : : : : : : : : : : : : : :
Figure 100: Mixer jobs, job slot vs. time.
Job Time Units Description
mixer reset 1 Reset mixer unit to default state; Cancel all jobs.
stop running job 1 Stop a particular running job, return value to initial state.
fade without notify n Over n time units, fade mixer register from
initial value to ending value, interpolating as necessary.
fade with notify n Over n time units, fade mixer
register from initial value to ending value,
interpolating as necessary. Notify host upon completion.

Table 10: Mixer job table.

10.3 The DACS Firmware Library

Since both pieces of hardware use the same microcontroller and share some underlying hardware
structure, it makes sense to build a library to provide support for the shared functionality between
devices.

Both devices use serial ports, Pbus controllers, LCDs, and analog-to-digital conversion. This
particular subset of functions was well-suited for inclusion in a firmware library.

Figure 101 depicts a data flow and function interface overview for the firmware library, dubbed
dacslib.

125

serialdata — . framed _— _
\} 01011101 data

serial

serial driver serial protocol
port
-
_ >
8-bit measurement - (@)
f i input select =— —
a-to-d and o (@)
input multiplexer analog-to-digital driver o S
S
———————— 8-bitdatapath =———= m —+
y addx/ctrl =—— CD
—h
pbus .
controller pbus driver Q
5
F 8-bitdata =——— commands =
LCD convenience
LCD driver functions

DACS library function & data interface

Figure 101: DACS firmware library, data flow and function interface overview.

126

11 Firmware Protocols

11.1 Serial Communications Protocol

To facilitate communication between the embedded microcontrollers and the host PC, a serial
communications protocol was developed. The protocol is relatively simple in design, but effective.

The protocol consists of three layers: physical, framing, and application-specific. The physical
layer relates to the actual medium and means of transmission. Framing relates to encapsulation
and transmission/receipt of data packets. The application-specific layer defines messages that
specific applications use to communicate.

11.1.1 Physical Layer

This protocol is intended to be used with a standard asynchronous serial port running at 9600
or 19200 baud, 8 data bits, no parity, one stop bit (8-N-1). Electrical characteristics of the serial
line may follow EIA 232C, EIA 422 or EIA 485 specifications.

Support for the 68HC11 internal serial communications interface (SCI) shall be provided, as
well as for the R65C51 Asynchronous Communications Interface Adapter (ACIA).

11.1.2 Framing

Before a raw data stream may be sent, it must be framed. A stream is of variable length, and
may contain full 8-bit data. No error detection or correction is employed at this level of the
protocol, however simple CRC (Cyclic Redundancy Check) calculation could be added in at a
later date.

Three bytes are defined to facilitate framing the data. Most importantly, the data link escape
(DLE) character, defined as 0x10, tells the serial receiver that the next character received has
special meaning and is not simply data. The two framing characters STX and ETX (Start
Transmission and End Transmission, respectively) are used to signify the beginning and end of
a frame when preceded by a DLE. STX and ETX are defined as 0x02 and 0x03 respectively.
Figure 102 depicts a raw data stream properly framed by DLE, STX and ETX.

Raw, unframed data:

1H1 1E1 1L1 ,L, 101 1!1 1!1

No character stuffing necessary; the raw data is 'protocol clean’.
Framed data:

DLE STX 'H = L L o) T T DLE ETX

Figure 102: Serial protocol, ’clean’ data framed for transmission.

Figure 102 shows a raw data stream with no embedded DLE bytes. However, it is certainly
possible that the raw data stream may contain one or many DLE bytes. In this case, the sender
must character stuff, or escape the embedded DLE characters. It simply doubles them up as
it comes across them. The receiver merely strips the extra DLE off upon receipt of the frame.
Figure 103 shows an example of a character stuffed frame.

127

Raw, unframed data:

OXFE | Ox9D | 0x10 0x0C | 0x01 | 0x30

The driver must character stuff any instance of DLE
when building a frame.
Framed data:

DLE STX OXFE | Ox9D | DLE DLE | OxOC | Ox01 | Ox30 DLE ETX

in the protocol, DLE is defined as 0x10

Figure 103: Serial protocol, 'unclean’ data character stuffed and framed for transmission.

128

12 Firmware Modules

12.1 Firmware Library

The DACS firmware library provides a relatively rich set of functions to a firmware program.
Figure 104 gives an overview of these functions.

pbus routines Icd routines
pbus lread stdlcd writecmd
pbus_ lwrite stdlcd writechar
pbus_init stdlcd out
stdlcd init
stdlcd clrhome
stdlcd goto
stdlcd bar
pbus.c, pbus.h stdlcd.c, stdlecd.h
serial routines a-to-d routines
SCI poll in ad_init
SCI block in ad_read
SCI chout
SCI_out
SCI init
SCI prep raw
SCI prep cooked
SCI_data_ to cooked
SCI service
SCIserial.c, adconv.c, adconv.h
SCIserial.h

Figure 104: DACS firmware library, module view with functions.

The code, listed in the following section, provides reasonable documentation for the use of
each of these functions in the comment block above each function.

12.2 Control Board

Figure 105 depicts the module layout for the “dumb” mode of the control board firmware. The
shaded elements are modules from the firmware library. The remaining elements are specific to
the control board application.

129

pbus.c, pbus.h

pbusdefn.h

stdlcd.c, stdled.h boardmain.c

lcddefn.h

SCIserial.c,
SCIserial.h

boardvect.c

A

gfxlcd.c, gfxlecd.h

Figure 105: Control board firmware, module view.

12.3 Mixer Unit

Figure 106 depicts the module layout for the “dumb” mode of the mixer unit firmware. The
shaded elements are modules from the firmware library. The remaining elements are specific to

the mixer unit application.

130

pbus.c, pbus.h

pbusdefn.h

stdlcd.c, stdlcd.h mixmain.c

lcddefn.h

SCIserial.c,

SCIserial.h

boardvect.c

AW

mixdrv.c, mixdrv.h

Figure 106: Mixer unit firmware, module view.

131

13 Firmware Code

This section presents all of the code presently written for the hardware developed. It is written in
ANSI C, and is meant to be compiled using the ImageCraft 68HC11 cross-compiler icc11. Two
versions were used during the development of the firmware, 3.6 and 4.0. No significant differences
were noted between these versions, and all code should build under either version.

The Linux version of the icc11 compiler was used. A build environment was tailored to the
specific configurations of the embedded microcontrollers used. Appropriate unix shell modifica-
tions should be made to set these environment variables.

ICC11=/u/samba/mqp/68hcll/tools/iccll

ICC11_INCLUDE=$ICC11/include

ICC11_LIB=$ICC11/1ib

ICC11_LINKER_OPTS="-dheap_size:0 -btext:0xE000 -dinit_sp:0x2FFF -bdata:0xB800"

13.1 Firmware Library, dacslib
13.1.1 SCI Serial Driver Header, SCIserial.h

The following header file provides function prototypes for the 68HC11 SCI serial driver, structure
definitions for data frames, payload size definitions, and data link control byte definitions.

[k ok sk sk ok sk sk ok ok sk ok sk sk ok ok sk ok sk sk ok sk sk sk sk sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e ks sk ok sk sk ok sk ok sk sk sk sk ok ok ok
* DACS : Distributed Audio Control System

File: SCIserial.h
Author: Stephen S. Richardson
Date Created: 04.14.97
Environment: ICC11 v4.0, 68HC11 target
Build: library

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk s ok o ok st ok sk ok ok s ok o ok st ok ok ook sk ok ok ok sk ok ok sk sk ok sk ok sk s ok sk sk ok s ok sk sk ok ook sk ook stk ok ok sk s ok sk sk ok sk ok sk s ok sk sk ok ook sk sk ok ok ok ok

*
*
*
*
*
*
*
*
*
*

* Source code control:
*

* $Id: SCIserial.h,v 1.1 1997/07/12 18:02:00 prefect Exp prefect $
*

***/

#ifndef _SCIserial
#define _SCIserial

/* frame markers */

#define DLE 0x10 /* data link escape */
#define STX 0x02 /* start transmit */
#define ETX 0x03 /* end transmit */

/* buffers and lengths */

#define MAXPAYLOAD 128 /* maximum length of the payload */
#define MAXFRLEN MAXPAYLOAD+MAXPAYLOAD+4 /* max frame length */
#define INBUFLEN MAXFRLEN+1 /* size of input buffer */

132

#define OUTBUFLEN MAXFRLEN+1 /* size of output buffer */

/* errors */
#define ERRTOOBIG 10 /* frame done; was too big! */
/* structures */

struct cooked_frame { /* character stuffed frame */
unsigned int len;
unsigned int cur;
unsigned char done;
unsigned char data[MAXFRLEN];
+

struct raw_frame { /* unstuffed frame */
unsigned int len;
unsigned int cur;
unsigned char done;
unsigned char dleflag;
unsigned char stflag;
unsigned char data[MAXPAYLOAD];
};

int SCI_poll_in (unsigned char *c);

char SCI_block_in (void);

void SCI_chout (unsigned char ch);

void SCI_out (char *s);

void SCI_init (void);

void SCI_prep_raw (struct raw_frame *raw);

void SCI_prep_cooked (struct cooked_frame *cooked) ;

void SCI_data_to_cooked (char *data, int len, struct cooked_frame *cooked) ;
int SCI_service (struct raw_frame *inraw, struct cooked_frame *outfr);

#endif

13.1.2 SCI Serial Driver Code, SCIserial.c

The following code provides serial driver functions for the 68HC11 SCI serial interface. Frame
handling functions are provided as well as simple serial access routines.

/KK s ok sk sk ok ok sk s ok sk K ok ok ok o ok ok kK ok ok ok o ok sk ok ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok sk ok ok sk sk sk ok sk sk ok ok sk sk sk ok ok ok ok ok ok ok ok
* DACS : Distributed Audio Control System
fmm———m—————
File: SCIserial.c

Author: Stephen S. Richardson
Date Created: 04.14.97
Environment: ICC11 v4.0, 68HC11 target

Build: library, not standalone

* X X ¥ ¥

*

*

The code, executables, documentation, firmware images, and all related
material of DACS are

*

133

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

KoK KK oK KK oK oK KK oK K oK K ok K ok KoK KK ok K oK KK Kok K oK K K K K ok Kok oK ok ok ok ok ok ok ok ok ook ok K ok ok ok ok K ok K ok ok Kok K ok K K
* Source code control:

*

* $Id: SCIserial.c,v 1.3 1997/07/13 01:23:16 prefect Exp prefect $

*

Kok KoK KoK KoK KK oK K oK K ok KoK oK KK ok K oK KK K Kok K oK K K KK ok Kok K oK ok ok ok ok K ok ok ok sk ok ok ok ok ok Kok ok Kk Kok ok ok

#include <hcll.h>
#include "SCIserial.h"

#ifdef _MIXER
#include "pbusdefn.h"
#endif

/Ko Kok KoK KoK KKK oK KKK KKK oK oK oK K oK oK ok Kok oK oK oK ok ok Kok oK oK ok K ok ok Kok K ok ok KK Kok K oK K K Kok Kok K ok ok o
* SCI_prep_raw
*
* initializes a raw frame
KoK oK ok oK oK o oK ok o oK ok oK oK oK ok K ok KoK oK o K o oK oK oK K o K ok oK oK oK oK oK ok K ok oK oK ok ok ok ok oK ok oK o ok ok ok oK ok ok ok ok ok ok Kok ok ok /
void SCI_prep_raw (struct raw_frame *raw)
{

int i;

raw->1len=0;

raw->cur=0;

raw->done=0;

raw->dleflag=0;

raw->stflag=0;

for (i=0;i<MAXPAYLOAD;i++) raw->datal[i]=0;

/***

* SCI_prep_cooked
*

* initializes a cooked frame
ok ok ok ok K 3 ok oK K ok ok 3K ok ok K ok ok oK K ok ok oK K 3 oK ok 3 K ok ok oK 3 o ok ok 3 ok ok ok 3 ok ok ok K ok ok 3k ok ok ok K ok ok 3k ok ok ok ok kK ok ok ko k /

void SCI_prep_cooked (struct cooked_frame *cooked)
{

int i;

cooked->1len=0;

cooked->cur=0;

cooked->done=1;

for (i=0;i<MAXFRLEN;i++) cooked->datal[i]=0;

/***

134

SCI_data_to_cooked

stuffs data into a cooked frame, setting parameters, etc. output frame

is suitable to be directly output.
stk sk sk ok o ok sk sk sk ok e ok sk sk sk sk ok sksk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk sk sk sk ok k sk sk ok sksk sk ok ok sksksk sk ok sk sk sk ko kok /

*
*
*
*

void SCI_data_to_cooked (char *data, int len, struct cooked_frame *cooked)
{

int i=0, j=0;

char *p;

/* start of frame: DLE+STX */
cooked->data[j++]=DLE;
cooked->data[j++]=STX;

/* payload of frame (character stuffed) */
p=data;

for (i=0;i<len;i++) {
if (xp == DLE) {
cooked->datal[j++]=DLE;
cooked->datal[j++]=DLE;
pt+;
} else {
cooked->data[j++]=*p;
ptt;

}
}

/* end of frame: DLE+ETX */
cooked->datal[j++]=DLE;
cooked->datalj++]=ETX;

/* set length and other parameters */
cooked->len=j;
cooked->cur=0;
cooked->done=0;

/***

* SCI_service
*

* perform necessary SCI operations to manipulate incoming and outgoing

* frames, using a raw frame as an input buffer
stk ok ok ok sk ok ok sk ok sk sk sk sk ok sk sk ok sk sk ke sk sk sk sk sk ok sk sk sk sk sk sk sk ke sk sk ok sk sk ok sk sk ok sk sk ke skok sk sk sk sk sk sk sk sk ok sk sk ok /

int SCI_service (struct raw_frame *inraw, struct cooked_frame *outfr)
{
unsigned char ch;

/* outgoing serial data & sci output port !busy? */

if ((SCSR&0x80) && (outfr->done==0)) {

135

#ifdef _MIXER
PBC_PC~=0x08;
#endif
SCDR=outfr->dataloutfr->cur]; /* output the current byte */

/* have we transmitted all of it yet? */
if (++outfr->cur < outfr->len) {
/* not yet.. x/
} else {
/* yes */
outfr->done = 1;
}
#ifdef _MIXER
PBC_PC&="0x08;
#endif
}

/* incoming data on sci and unfinished inraw frame? */

if ((SCSR&0x20) && (inraw->done==0)) {
/* -— yes, get and fill in the next byte */

#ifdef _MIXER
PBC_PC"=0x04;
#endif
ch = SCDR;

if (inraw->dleflag) {
/* the last byte received was a DLE */

if (ch == DLE) {
/* stuffed character */

if (inraw->stflag == STX) {
/* save it if we’re mid-frame */
inraw->data[inraw->cur] = DLE;
inraw->dleflag=0;

if (++inraw->cur < MAXPAYLOAD) {

} else {
inraw->done = ERRTOOBIG;
}
}
} else if (ch == STX) {

/* start of frame */
inraw->done = 0;
inraw->cur = O;
inraw->dleflag=0;
inraw->stflag=STX;

} else if (ch == ETX) {

136

/* end of frame */
inraw->done = 1;
inraw->dleflag=0;
inraw->stflag=0;

}

} else {
if (ch == DLE) {
/* first DLE */
inraw->dleflag = 1;
} else {
/* other data */

if (inraw->stflag == STX) {
/* save it if we’re mid-frame */
inraw->data[inraw->cur] = ch;
inraw->dleflag=0;
if (++inraw->cur < MAXPAYLOAD) {
} else {
inraw->done = ERRTOOBIG;
}
}
}
}
#ifdef _MIXER
PBC_PC&="0x04;
#endif
}
}

/s kst stk ok stk stk ok sk skl skok sk stk ks stk ks sk ksl sk ok sk sk stk sk stk ksl s ksl sk ok sk stk sk ek sk sk ok ok
* SCI_poll_in

*

* polled SCI input. returns 1 if there was actually a character to get.

skt ok sk ok sk ksl stk etk ke ksl ksl sk ko ok stk st ek sk sk ksl ok sk ko kst kst ek skl sk ko sk sk ok skskokok /
int SCI_poll_in (unsigned char *c)

{
if (SCSR&0x20) {
*c=SCDR;
return 1;
} else {
return O;
}
}

/KoK ko ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok sk ok ok ko o o ok ok ok ok ok sk ok sk ok o o ok ok ok ok ok sk sk sk ok o o sk ok ok ok ok sk sk ok ko ok ok ok ok ok ok sk ok ok o o ok
* SCI_block_in
b3

* blocking SCI input. returns character.
skt ok sk ok sk ksl stk etk ke ksl ok sk sk ks ok stk st ks skl ok sk sk ok sk kst ek sk ksl ok sk ko sk sk sksk ok /

137

char SCI_block_in (void)
{
while (! (SCSR&0x20));
return (SCDR);

/3 ok sk sk sk ok sk sk ok ok sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk ok sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e sk sk sk ok sk sk ok sk ok sk sk sk sk ok ok ok
* SCI_poll_in
*
* polled SCI input. returns 1 if there was actually a character to get.
stk ok ke ok sk ok ok sk sk sk sk ok sk ok sk sk sk sk ke ks sk sk sk ok sk sk sk sk sk sk sk ke sk sk sk sk ok sk sk sk sk e skok sk sk sk sk sk sk sk sk ok sk sk ok /
void SCI_chout (unsigned char ch)
{
while (! (SCSR&0x80));
SCDR = ch;

[kokskok ok ko ok sk ok sk ok ok ok ok sk ok sk ko sk ok sk ok sk sk ok sk sk sk ok sk sk sk ok sk sk ok sk sk ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok
* SCI_out
*
* SCI output (blocking)
KKK KKK KK KK KKK KK oK oK KK K ok KoK ook K ook K ok kK ok koK ok kK ok ok ok ok K ok koK ok koK ok ok ok kK ok koK ok ok ok ok ok ok ok
void SCI_out (char *s)

{
char *t=s;
while (xt!=0) {
while (! (SCSR&0x80));
SCDR = *t++;
¥
}

/KK ook sk sk ok ok sk sk ok sk K ok ok ok o ok ok kK ok ok ok o ok sk ok ok ok ok ok ok sk ok s ok ok ok ok ok sk sk ok ok sk ok ok sk sk sk ok sk ok ok ok sk sk sk ok ok ok ok ok ok ok
* SCI_init
*
* initialize SCI port, 9600 baud, 8-N-1
Kok ok ok ok K K ok ok ok ok K K 3k ok ok ok ok ok ok K K K K 3 ok ok ok ok ok ok oK K K K K o ok ok ok ok ok oK ok kK K K ok ok ok ok ok ok ok KK KK ok ok ok ok ok ok ok Kok Kk /
void SCI_init (void)
{
BAUD=0x30;
SCCR2=0x2C;

13.1.3 ACIA Serial Driver Header File, ACIAserial.h

The following header file is very similar to SCIserial.c, except it provides declarations for
R65C51 ACIA (Asynchronous Communications Interface Adapter) communications. This ACTA
is present on the CMD-11AS8 single-board computer used in the mixer unit.

/***

138

* DACS : Distributed Audio Control System
I —

* File: ACIAserial.h

* Author: Stephen S. Richardson

* Date Created: 07.14.97

* Environment: ICC11 v4.0, 68HC11 target
* Build: library

k===========

* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ook sk ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk o ok ok sk ok sk ok ok ok o ok ok sk o ok ok ok ok ok sk ok o ok ok sk ok ok ok ok ko ok ok ok sk ok ok ok ok ok ok K ok ok ok
* Source code control:

*

* $Id: ACIAserial.h,v 1.1 1997/07/23 22:12:31 prefect Exp prefect $

*

Kok ok ok ok K K K ok ok ok ok K K 3k ok ok ok ok ok ok K KK K o ok ok ok ok ok ok oK Kk K o ok ok ok ok ok oK ok K K KK K ok ok ok ok ok ok ok KoK KK ok ok ok ok ok ok ok KoKk kK k /

#ifndef _ACIAserial
#define _ACIAserial

/* ACIA port definitions (CMD11A8) */
#define ACIACTRL *(unsigned char *) (0xB5FB)
#define ACIACMD *(unsigned char *) (0xB5FA)

#define ACIASTAT *(unsigned char *) (0xB5F9)
#define ACIADATA *(unsigned char *) (0xB5F8)

/* frame markers */

#define DLE 0x10 /* data link escape */
#define STX 0x02 /* start transmit */
#define ETX 0x03 /* end transmit */

/* buffers and lengths */

#define MAXPAYLOAD 128 /* maximum length of the payload */
#define MAXFRLEN MAXPAYLOAD+MAXPAYLOAD+4 /* max frame length */

#define INBUFLEN MAXFRLEN+1 /* size of input buffer */

#define OUTBUFLEN MAXFRLEN+1 /* size of output buffer */

/* errors */

#define ERRTOOBIG 10 /* frame done; was too big! */

/* structures */

struct cooked_frame { /* character stuffed frame */
unsigned int len;

unsigned int cur;
unsigned char done;

139

unsigned char data[MAXFRLEN];
s

struct raw_frame { /* unstuffed frame */
unsigned int len;
unsigned int cur;
unsigned char done;
unsigned char dleflag;
unsigned char stflag;
unsigned char data[MAXPAYLOAD];
};

int ACIA_poll_in (unsigned char *c);

char ACIA_block_in (void);

void ACIA_chout (unsigned char ch);

void ACIA_out (char *s);

void ACIA_init (void);

void ACIA_prep_raw (struct raw_frame *raw);

void ACIA_prep_cooked (struct cooked_frame *cooked);

void ACIA_data_to_cooked (char *data, int len, struct cooked_frame *cooked);
int ACIA_service (struct raw_frame *inraw, struct cooked_frame *outfr);

#endif

13.1.4 ACITA Serial Driver Code, ACIAserial.c

The following code implements the ACIA serial driver code. It is very similar to SCIserial.c.

/3 ok sk sk sk ok sk sk o ok sk sk ok sk sk ok ok sk ok sk sk ok sk ok sk sk sk ok sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e ks sk ok sk sk ok sk ok sk sk sk sk ok ok ok
* DACS : Distributed Audio Control System

f===========
* File: ACIAserial.c

* Author: Stephen S. Richardson

* Date Created: 07.14.97

* Environment: ICC11 v4.0, 68HC11 target

* Build: library, not standalone

*

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

KoK KoK KK K oK KK oK K oK K ok K ok KoK KoK ok K oK K K Kok K oK K K K K ok Kok K ok ok ok oK ok oK ok ok ook ok K ok ok ok ok K ok K ok ok Kok K ok K K
* Source code control:

*

* $Id: ACIAserial.c,v 1.1 1997/07/23 22:12:36 prefect Exp prefect $

*

Kok KoK KoK KoK Kok K oK K ok KoK KoK K K ok K oK K K Kok K oK K K Kok Kok K ok ok ok oK ok K ok ok ok ok ok oK ok ok Kok ok Kk Kok ok K ok

#include <hcll.h>
#include "ACIAserial.h"

#ifdef _MIXER

#include "pbusdefn.h"
#endif

140

/KoK ok ok ok koK o ok ok oK o oK ok oK oK oK oK oK ok oK ok oK oK oK o K ok oK oK oK ook ok K ok oK o oK ok K ok ok ok o K ok o ok oK o K ok o ok o oK oK ok K ok K ok ok o
* ACIA_prep_raw
*
* initializes a raw frame
KoK KoK KoK KoK K KoK KoK K ok KoK oK Ko K ok K KK KKK ok K oK K K KK ok Kok oK oK ok ok ok ok oK ok ok ok sk ok ok ok ok ok Kok ok Kk Kok ok ok
void ACIA_prep_raw (struct raw_frame *raw)
{

int i;

raw->len=0;

raw->cur=0;

raw->done=0;

raw->dleflag=0;

raw->stflag=0;

for (i=0;i<MAXPAYLOAD;i++) raw->datal[i]=0;

/***

* ACIA_prep_cooked
*

* initializes a cooked frame
ke sk 3 ok ok ok ok sk 3 ok 3 ok ok K ok ok 3 ok sk K ok K ok K ok k3 ok K o ok 3 ok sk 3 ok K ok sk 3 ok K ok ok ok sk K ok k3 ok K ok sk ok K ok ok 3 ok sk ook ook ok ok sk k ok k /

void ACIA_prep_cooked (struct cooked_frame *cooked)

{

int i;

cooked->1en=0;
cooked->cur=0;
cooked->done=1;

for (i=0;i<MAXFRLEN;i++) cooked->datal[i]=0;

/***
* ACIA_data_to_cooked

*

* stuffs data into a cooked frame, setting parameters, etc. output frame

* is suitable to be directly output.
stk sk sk sk ok o ok ok sk sk sk sk ok ok sk sk sk sk ok sksk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ke sk sk sk sk sk sk ke sk sk sk ok sksk sk ok sksk sk sk ok sk sk sk ko kok /

void ACIA_data_to_cooked (char *data, int len, struct cooked_frame *cooked)
{

int i=0, j=0;

char *p;

/* start of frame: DLE+STX */

cooked->data[j++]=DLE;
cooked->data[j++]=STX;

141

/* payload of frame (character stuffed) */
p=data;

for (i=0;i<len;i++) {
if (xp == DLE) {
cooked->data[j++]=DLE;
cooked->data[j++]=DLE;
pt+;
} else {
cooked->datal[j++]=*p;
pt+;
}
}

/* end of frame: DLE+ETX */
cooked->datal[j++]=DLE;
cooked->data[j++]=ETX;

/* set length and other parameters */
cooked->len=j;
cooked->cur=0;
cooked->done=0;

[ok skskoskosk ok ok ok sk sksk ok sk ok sk sk sk ok ok sksk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk ok ke sk sk sk ok ksk sk sk ok sk sk sk ok sk sk sk ok ok sksk sk ok sk sk ok
* ACIA_service

*

* perform necessary ACIA operations to manipulate incoming and outgoing

* frames, using a raw frame as an input buffer

stk sk sk sk ok o ok sk sk sk ok o ok sk sk sk sk ok sksk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ke sk sk sk sk sk sk ok sk sk sk ok sksk sk ok sk sk sk sk ok sk sk sk ko kok /
int ACIA_service (struct raw_frame *inraw, struct cooked_frame *outfr)

{

unsigned char ch;
/* outgoing serial data & ACIA output port !busy? */
if ((ACIASTAT&0x10) && (outfr->done==0)) {

#ifdef _MIXER
PBC_PC~=0x08;
#endif
ACIADATA=outfr->dataloutfr->cur]; /* output the current byte */

/* have we transmitted all of it yet? */
if (++outfr->cur < outfr->len) {
/* not yet.. x/
} else {
/* yes */
outfr->done = 1;
}
#ifdef _MIXER

142

PBC_PC&="0x08;
#endif
}

/* incoming data on ACIA and unfinished inraw frame? */

if ((ACIASTAT&0x08) && (inraw->done==0)) {
/* -— yes, get and fill in the next byte */

#ifdef _MIXER
PBC_PC~=0x04;
#endif
ch = ACIADATA;

if (inraw->dleflag) {
/* the last byte received was a DLE */

if (ch == DLE) {
/* stuffed character */

if (inraw->stflag == STX) {
/* save it if we’re mid-frame */
inraw->data[inraw->cur] = DLE;
inraw->dleflag=0;

if (++inraw->cur < MAXPAYLOAD) {
} else {
inraw->done = ERRTOOBIG;

}

¥
} else if (ch == STX) {

/* start of frame */
inraw->done = 0;
inraw->cur = 0;
inraw->dleflag=0;
inraw->stflag=STX;

} else if (ch == ETX) {
/* end of frame */
inraw->done = 1;
inraw->dleflag=0;
inraw->stflag=0;

}

} else {
if (ch == DLE) {
/* first DLE */
inraw->dleflag = 1;
} else {
/* other data */

if (inraw->stflag == STX) {

143

/* save it if we’re mid-frame */
inraw->data[inraw->cur] = ch;
inraw->dleflag=0;
if (++inraw->cur < MAXPAYLOAD) {
} else {
inraw->done = ERRTOOBIG;
}
}
}
}
#ifdef _MIXER
PBC_PC&="0x04;
#endif
}
}

/***
* ACIA_poll_in
*

* polled ACIA input. returns 1 if there was actually a character to get.
st sk sk ok ok ok o o ok sk ok ok ok ok o ok sk sk ok o ok sk sk ok o sk sk sk ok ok ok sk sk ok ok ok sk sk sk sk o sk sk sk o sk sk ok s sk sk ok sk e ok sk ok sk o ok sk sk sk sk sk sk sk ok ok ok /

int ACIA_poll_in (unsigned char *c)

{
if (ACIASTAT&0x08) {
*Cc=ACIADATA;
return 1;
} else {
return O;
¥
¥

/KoK ok sk sk ok ok ok ok ok K K ok ok ok ok ok ok ok KK K K 3 o ok ok ok ok ok KoK K K o o ok ok ok ok ok oK Kk K K ok ok ok ok ok ok KoK K K Kk o ok ok ok ok ok K oK K ok ok
* ACIA_block_in
*

* blocking ACIA input. returns character.
***/

char ACIA_block_in (void)

{
while (! (ACIASTAT&0x08));
return (ACIADATA);

/w3 kst ok stk ok stk stk oksk ksl sk ok sk stk ks stk ks sk ksl skok sk stk sk stk ksl sk skok sk sk stk sk ek sk sk ok ok
* ACIA_poll_in

*

* polled ACIA input. returns 1 if there was actually a character to get.

sk sk ok ke ok sk ok sk sk ok sk sk sk sk sk sk sk sk sk ke sk sk sk sk sk ok sk sk sk sk sk sk sk ke ok sk sk sk ok sk sk ok sk sk ke sksk sk sk sk sk sk sk sk sk ok sk sk ok /

void ACIA_chout (unsigned char ch)
{

144

while (! (ACIASTAT & 0x10));
ACIADATA = ch;

kKoo ok ok sk sk ok ok ok o ok kR ok o ok sk ok ok o sk ok ok ok ok sk ok o ok skok ok ok sk sk ok ok ok sk sk ok sk sk ok o ok sk ok ok ok sk ok o ok Kok ok o o ok ok
* ACIA_out
E 3
* ACIA output (blocking)
koo okokokokokokokokokokokokokok ok okok skokok ko ok ok ok o ok ok ok ok sk ok skok sk sk ok ok ok ok ok ok ok ok sk ok skokskok ok ok sk ok ok ok ko ko ok kok ok /
void ACIA_out (char *s)

{
char *t=s;
while (*t!=0) {
while (! (ACIASTAT & 0x10));
ACIADATA = *t++;
}
¥

/o stk ok o stk ok ok stk ok stk ok ko sk ks sk ok sk o stk sk ok stk ko sk ook sk ok sk ok o stk sk ok sk sk sk sk ook sk ok sk ok o sk sk sk ok sk ok ok
* ACIA_init
*
* initialize ACIA port, 9600 baud, 8-N-1
st ok sk ok o s ok ok sk sk o o s ok ok sk o sk ok sk o s ok sk sk sk ok sk o o e ok sk sk o e sk sk ok sk sk sk sk ok sk o sk ok stk ok o ks sk ok skokok ko keok /
void ACIA_init (void)
{
ACIACTRL = Ox1E;
ACIACMD = 0xCB;
}

13.1.5 pbus Driver Header File, pbus.h

The following is the header file for the Pbus driver code. It merely provides function prototypes
for the pbus functions.

[ok skskskosk ok ok ok sk sksk ok sk ok ok sk sk ok ok sksk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk sk sk sk sk ke sk sk sk sk ok sk sk sk ok sk sk sk ok ok sksk sk ok sk ok
* DACS : Distributed Audio Control System

f===========
* File: pbus.h

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target
* Build: library, not standalone

*

* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk 3 ok ok ok ok sk o ok 3 ok 3 ok K ok ok 3 ok 3k 3 ok K o ok K ok K 3 ok K ok ok 3 ok K 3k ok 3 ok sk 3 ok K ok sk 3 ok 3k 3 ok K ok sk K ok k3 ok K ok ok 3 ok K ok ok 3 ok ok K ok 3 ok ok K
* Source code control:

*

* $Id: pbus.h,v 1.1 1997/07/23 21:31:54 prefect Exp prefect $

145

*
***/

#ifndef _pbus
#define _pbus

void pbus_lwrite (unsigned char addx, unsigned char data);
unsigned char pbus_lread (unsigned char addx) ;
void pbus_init (void);

#endif

13.1.6 pbus Driver Code, pbus.c

The code that implements the Pbus driver is presented below.

[ok skskskosk ok ok ok sk sksk ok sk ok ok sk sk ok ok sksk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk ok ok sk sk ok sk sk sk ok ok sksk sk ok ok sk ok
* DACS : Distributed Audio Control System

f===========
* File: pbus.c

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target
* Build: library, not standalone
f===========

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
st sk sk ok ok ok o o ok sk ok ok ok ok o ok sk sk ok o ok sk ok o o ok sk sk ok e ok sk ok ok sk ok sk sk ok ok o ki sk sk o sk sk sk o sk sk ok o sk sk ok sk ok ok sk ok sk o ok sk ok sk o ok kok ok

* Source code control:
*

* $Id: pbus.c,v 1.1 1997/07/23 21:30:10 prefect Exp prefect $
*

***/

#include <hcll.h>
#include "pbus.h"
#include "pbusdefn.h"

/***
* pbus_init
*
* initializes pBUS controller, appropriate bits, etc.
stk sk sk ok ok ok okokokokokokokok kokok sk sksk sk sksk sk sk sk sk ok ok o ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk kok sk sk sk sksk sk sk sk sk sk sk sk sk ok ok ko ok kok ok /
void pbus_init (void)

{
PBC_PX=PBC_0X; /* pBUS in output mode */
PBC_PA=0; /* pBUS data bus = 0 */
PBC_PB=0; /* pBUS addx bus = 0 */
PBC_PC|=PB_N_LATCH|PB_N_CLOCK; /* pBUS latch- and clock- inactive */
}

146

/***

* pbus_lwrite
*

* does a standard pBUS latch write operation; writes data to pBUS addx.
st sk sk ok ok ok o o ok sk ok ok ok ok o ok ok sk ok o o ok sk sk ok o ok sk sk ok o ok sk sk ok ok sk ak sk sk o sk sk sk o sk sk ok s ok sk sk ok sk ok sk ok sk o ok sk sk sk sk sk ok sk ok ok ok /

void pbus_lwrite (unsigned char addx, unsigned char data)

{
PBC_PX=PBC_0X; /* pBUS in output mode */
PBC_PC|=PB_N_LATCH|PB_N_CLOCK; /* pBUS latch- and clock- inactive */
PBC_PA=data; /* data on pBUS x/
PBC_PB=addx |PB_N_RD_WR; /* addx on pBUS, write mode */
PBC_PC&="PB_N_LATCH; /* pBUS latch- active */
PBC_PC|=PB_N_LATCH; /* pBUS latch- inactive */

}

/***

* pbus_lread
*

* does a standard pBUS latch read operation; returns pBUS data from addx
stk sk ok ok ok o o ok sk ok ok ok ok o sk sk ok o o ok sk sk ok o ok sk sk ok s ok sk sk ok ok ok sk sk sk sk o sk sk sk o sk sk ok s ke sk sk ok sk e ok sk ok sk o ok sk sk sk sk sk sk sk ok ki ok /

unsigned char pbus_lread (unsigned char addx)

{
unsigned char c;
PBC_PX=PBC_IX; /* pBUS in input mode */
PBC_PC|=PB_N_LATCH|PB_N_CLOCK; /* pBUS latch- and clock- inactive */
PBC_PB=addx&~PB_N_RD_WR; /* addx on pBUS, read mode */
PBC_PC&="PB_N_LATCH; /* pBUS latch- active */
c=PBC_PA; /* data from pBUS */
PBC_PC|=PB_N_LATCH; /* pBUS latch- inactive */
return (c);

}

13.1.7 pbus Defines Template, pbusdefn-template.h

The following is a template pbusdefn.h file. In an application that uses the Pbus control code,
this template is modified to reflect the memory locations of the controller ports. Additionally,
this file provides a stub for the definition of application-specific Pbus addresses.

/R ks ok stk sk ok stk stk oksk skl skok sk sk stk stk stk ko sk ksl skok sk sk stk sk stk ksl sk ks skok sk stk sk ek sk sk ok ok
* DACS : Distributed Audio Control System

f===========
* File: pbusdefn.h

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target
* Build: library, not standalone

* The code, executables, documentation, firmware images, and all related

147

* material of DACS are
* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
T e e e T T Lt Lt I

* Source code control:
*

* $Id: pbusdefn-template.h,v 1.2 1997/07/23 21:35:55 prefect Exp prefect $
*

***/

#ifndef _pbusdefn
#define _pbusdefn

#define PBC_PA *(unsigned char *) (0xB580) /* pBUS controller port A */
#define PBC_PB *(unsigned char *) (0xB581) /* pBUS controller port B */
#define PBC_PC *(unsigned char *) (0xB582) /* pBUS controller port C */
#define PBC_PX *(unsigned char *) (0xB583) /* pBUS controller ctrl port */

#define PBC_IX 0x98 /* pBUS ctrl word: PA i / PB o / PCO-3 o / PC4-7 i */
#define PBC_0X 0x88 /* pBUS ctrl word: PA o / PB o / PCO-3 o / PC4-7 i */

/* pbus address definitions */
/* example: #define PBADX_MIXO 0x10 */

#endif

13.1.8 Alphanumeric LCD Driver Header, stdlcd.h

This header provides the function prototypes for the standard LCD driver.

[k ok sk sk ok sk sk ok sk ok sk sk ok ok sk ok sk sk ok sk ok sk sk sk sk ok sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e ks sk ok sk sk ok sk ok sk sk sk sk ok ok ok
* DACS : Distributed Audio Control System

*
* File: stdlcd.h

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target
* Build: library, not standalone

*
* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ook sk ok ok ok ok ok ok ok ok ok ok ook sk ok ok ok ok ok ok ok Kk 3 ok ok ko sk ok Kk o ok ok sk ok ok ok ok ok ok sk o ok ok sk ok sk ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok
* Source code control:

*

* $Id: stdlcd.h,v 1.1 1997/07/23 22:33:23 prefect Exp prefect $

*

Kok ok ok ok oK K ok ok ok ok K K ok ok ok ok ok ok ok K K K K o ok ok ok ok ok ok oK K K Kk o ok ok ok ok ok oK ok K K K K ok ok ok ok ok ok ok KK K ok ok ok ok ok ok ok Kok ok k /

#ifndef _stdlcd
#define _stdlcd

void stdlcd_writecmd (unsigned char idx, unsigned char d);
void stdlcd_writechar (unsigned char idx, unsigned char d);

148

void stdlcd_out (unsigned char idx, char *s);

void stdlcd_init (unsigned char idx, int *s);

void stdlcd_clrhome (unsigned char idx);

void stdlcd_goto (unsigned char idx, unsigned char pos);

void stdlcd_bar (unsigned char idx, unsigned char pos, unsigned char part,
unsigned char total);

#endif

13.1.9 Alphanumeric LCD Driver Code, stdlcd.c

[ok ik ok ok ok sk sksk ok sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk ok ke sk sk sk ok sk sk sk ok ok sksk sk ok ok sk ok
* DACS : Distributed Audio Control System

f===========
* File: stdlcd.c

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target
* Build: library, not standalone
f===========

* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk 3 ok ok ok ok sk 3 ok 3 ok ok K ok ok 3 ok sk K ok K ok K ok K ok K o ok 3 ok sk 3 ok K ok ok 3 ok K ok ok 3 ok sk ok 3k ok K ok k3 ok K ok ok 3 ok sk ook ok ok ok sk k ok k /

* Source code control:
*

* $Id: stdlcd.c,v 1.1 1997/07/23 22:33:29 prefect Exp prefect $
*

***/

#include <hcll.h>
#include "stdlcd.h"
#include "lcddefn.h"

/***
* stdlcd_writecmd
*
* write a command byte to a standard lcd
stk sk sk sk ok o ok sk sk sk o e ok sk sk sk sk ok sksk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk sk sk sk ke ok sk sk ok sksk sk ok sksk sk sk ok sk sk sk ok ok kok /
void stdlcd_writecmd (unsigned char idx, unsigned char d)

{

unsigned char *o;

while ((STDLCD_CMD+(idx*STDLCD_OFFSET))&0x80) ;
0=&STDLCD_CMD+ (idx*STDLCD_OFFSET) ;
*0=d;

}

/***

* stdlcd_writechar
%

* write a data byte to a standard lcd
stk skesksk ok sk ok sk sk skok ok sk ok ok sk sk ok stk ok sk ok sk sk sk ok sksk sk ok ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok stk sk ok oksk sk sk ok sksk ok sk ok kok /

void stdlcd_writechar (unsigned char idx, unsigned char d)

149

unsigned char *o;

while ((STDLCD_CMD+(idx*STDLCD_OFFSET))&0x80) ;
0=&STDLCD_DATA+ (idx*STDLCD_QOFFSET) ;
*0=d;

}

/3K 3k ook sk sk ok ok sk ok sk ok ok sk o ok ok K ok ok sk o ok sk K ok ok sk ok ok sk K ok ok 3k ok ok sk ok ok 3k ok ok sk ok ok ok K ok ok K k sk ok ok ok ok ok ok ok
* stdlcd_out
*
* write a string of data to a standard lcd
ok ok ok ok K 3 ok oK K ok ok 3 3 ok ok K o ok ok oK K ok ok ok 3K K oK ok 3 K ok ok oK 3 ok ok 3K ok ok ok 3 ok ok ok K ok ok 3k K ok ok ok 3 ok ok 3k ok ok ok ok kK ok ok ko k /
void stdlcd_out (unsigned char idx, char *s)

{

unsigned char *o;

while (xs) {
while ((STDLCD_CMD+ (idx*STDLCD_OFFSET))&0x80) ;
0=84STDLCD_DATA+ (idx*STDLCD_OFFSET) ;
x0=(unsigned char) x*s;
s++;

’

/***
* stdlcd_init
E 3
* initialize a standard lcd
ok ook koo ook ook koo kokokok ok okok skokok ko ok ok ok o ok ok sk sk skok skok sk sk ok ok ok ok ok ok ok sk ok skokskok ok ok sk ok ok ko ko ok kok ok /
void stdlcd_init (unsigned char idx, int *s)

{
unsigned char *o;
while (*s!=-1) {
while ((STDLCD_CMD+(idx*STDLCD_OFFSET))&0x80);
0=&STDLCD_CMD+ (idx*STDLCD_OFFSET) ;
xo=(unsigned char) *s;
s++;
X
}

/***
* stdlcd_clrhome
*
* clears standard lcd screen, homes cursor.
Kok ok ok ok K K ok ok ok ok K K 3k ok ok ok ok ok ok K K K K o ok ok ok ok ok ok oK K K K o ok ok ok ok ok ok ok K K K K 3 ok ok ok ok ok ok ok KK K ok ok ok ok ok ok ok Kok ok k /
void stdlcd_clrhome (unsigned char idx)

{
stdlcd_writecmd(idx, 0x01);

150

stdlcd_writecmd(idx, 0x00);
}

/***

* stdlcd_clrhome
*

* places the cursor on a standard lcd
stesksk ok ok ok ok okokokokokokokok kokok skok skok sk sksksksk sk sk ok ok ok ok sk sk ok sk sk sk sk sk sksk sk sk sk sk ok sk ok sk skok sk ok sk sksk sk sk sk sk sk sk sk ok ko kok ok ok kok ok /

void stdlcd_goto (unsigned char idx, unsigned char pos)

{
stdlcd_writecmd(idx, pos|0x80);

}

/3t sk kot ok ok ok ok ok ok ok okokokokok ki sk stk sk sk sk o ok s ok ok okok sk sk sk ki sk sk sk sk sk sk sk ok ke keok ok sk sk sksk stk sk ok sk sk sk sk ok ok ook ok ok ok ok
* stdlcd_bar
*
* draws a percentage type bar graph on a standard lcd
sokokokokokokokokokokokokokokokokok ook skoksk stk sk sk sk ok s ok ok okok ok sk sk skl sk sk sk sk sk sk sk ok ok kok ok sk ok ki sksk sk sk sk sk sk sk ok ok ok ook ok kok ok /
void stdlcd_bar (unsigned char idx, unsigned char pos, unsigned char *part,
unsigned char total)

{
char txt[41], i;
stdlcd_goto (idx, pos);
for (i=0;i<total;i++) {
if (i+i<part) txt[i]=0xDB;
else txt[i]l=’ ’;
}
txt[totall=0;
stdlcd_out (idx, txt);
}

13.2 Control Board
13.2.1 Firmware Build, Makefile

The following GNU Makefile is used to build the firmware image for the control board. A
standard Motorola S19 file is produced when the files are built. This image can be downloaded
to the EEPROM on the embedded microcontroller board using special software.

B g
DACS : Distributed Audio Control System
Model 112 System Control Board / Firmware Build File

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

HH R

H O HF O B H

151

CC = iccl1l

CFLAGS =

PROGS = links board
MAINDIR = .

S19DIR = $(MAINDIR)/s19
OBJDIR = $(MAINDIR)/obj
DACSLIB = ../dacslib

all: $(PROGS)

set up links to DACS1lib files, since iccll 3.6 can’t do what i want..
remember to change this if ’local’ copies of the 1lib funcs are used
(so they don’t get overwritten)

also change the make clean stuff if locals are used.

H O B O H H

links:

rm -f SCIserial.h SCIserial.c pbus.h pbus.c stdlcd.h stdlcd.c
1n -s $(DACSLIB)/SCIserial.c SCIserial.c

1n -s $(DACSLIB)/SCIserial.h SCIserial.h

1n -s $(DACSLIB)/pbus.c pbus.c

1n -s $(DACSLIB)/pbus.h pbus.h

In -s $(DACSLIB)/stdlcd.c stdlcd.c

In -s $(DACSLIB)/stdlcd.h stdlcd.h

buildnum:
./buildnum.pl

board: links buildnum

$(CC) $(CFLAGS) -oboard.s19 *.c
mv board.s19 $(S19DIR)

mv *.o $(0BJDIR)

clean:
rm -f board.s19 *.o0 *~ $(S19DIR)/board.s19 $(0BIDIR)/*.0
rm -f SCIserial.h SCIserial.c pbus.h pbus.c stdlcd.c stdlcd.h

13.2.2 Control Board Main Code, boardmain.c

The following code implements a simple operation mode of the control board in which fader data
is sent out as MIDI controller changes.

/***

* DACS : Distributed Audio Control System
f=m—————————

File: boardmain.c
Author: Stephen S. Richardson
Date Created: 04.14.97
Environment: ICC11 v3.6, 68HC11 target
Build: library, not standalone

* X ¥ ¥ ¥

*

*

The code, executables, documentation, firmware images, and all related
material of DACS are

*

152

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
ok sk ok ok sk ok ook kR ok sk ok sk kR ok ko sk sk sk ko ok sk ko kK ok sk ok sk kR ok sk ko sk kR ok sk ok ok kR ko ko ok ok ok /

#include <hcll.h>
#include "build.h"
#include "stdlcd.h"
#include "gfxlcd.h"
#include "lcddefn.h"
#include "SCIserial.h"
#include "pbus.h"
#include "pbusdefn.h"

unsigned char get_ad (unsigned char ch)

{
ADCTL = ch;
while (!(ADCTL & 0x80));
return(ADR1) ;

}

void get_faders (unsigned char *1list)

{
unsigned char hc, m;
int i;
PBC_PX=PBC_0X; /* pBUS in output mode */
PBC_PC"=PB_N_LATCH+PB_N_CLOCK; /* pBUS latch- and clock- inactive */
PBC_PA=0; /* data on pBUS x/
PBC_PB=PBADX_FADEMUXO"PB_N_RD_WR; /* addx on pBUS, write mode */
PBC_PC&="PB_N_LATCH; /* pBUS latch- active */

for (m=0;m<8;m++) {
for (i=0;i<100;i++);
PBC_PA=n; /* data on pBUS x/
ADCTL = 0;
while (!(ADCTL & 0x80));
list [m]=(ADR1+ADR2+ADR3+ADR4) /4;

}

PBC_PC~=PB_N_LATCH; /* pBUS latch- inactive */
PBC_PA=0; /* data on pBUS x/
PBC_PB=PBADX_FADEMUX1"PB_N_RD_WR; /* addx on pBUS, write mode */
PBC_PC&="PB_N_LATCH; /* pBUS latch- active */

for (m=0;m<8;m++) {
for (i=0;i<100;i++);
PBC_PA=n; /* data on pBUS x/
ADCTL = 1;
while (! (ADCTL & 0x80));

153

list [m+8]=(ADR1+ADR2+ADR3+ADR4) /4;

}
PBC_PC"=PB_N_LATCH; /* pBUS latch- inactive */

void main (void) {
int optrex_init[]=0PTREX16x1_INIT;

unsigned char i,n,j;
unsigned char faders[16], oldfaders[16];

OPTION"=0x80;

stdlcd_init (OPTREX16x1, optrex_init);
stdlcd_goto (OPTREX16x1, 0);
stdlcd_out (OPTREX16x1, "TRANSPOR");
stdlcd_goto (OPTREX16x1, 0x40);
stdlcd_out (OPTREX16x1, "T CONTRL");

SCI_init();
pbus_init () ;
gfxlcd_init();

for (i=0;i<16;i++) {
faders[i]=0;
oldfaders[i]=2;

}

while (1) {
get_faders (faders);

for (n=0;n<16;n++) {
i=faders[n] / 5;
j=faders([n] / 2;

if ((oldfaders([n]/5)!=(faders[n]/5)) {
gfxlcd_btmbar (n, i);
SCI_chout (0xBO0);
SCI_chout (n);
SCI_chout (j);
}

oldfaders[n] = faders[n];

154

13.2.3 Interrupt Vector Table, boardvect.c

The following code sets up the interrupt vector table for the 68HC11 used in the control board.
Currently, no interrupts are used.

extern void _start(); /* entry point in crtll.s x/
#pragma abs_address:0xffd6

void (*interrupt_vectors[]1)() =
{

/* to cast a constant, say 0xb600, use

(void (*) ())0xb600

*/

/* all interrupts reset the processor, which is probably not what
* we want forever.. */
_start,/* SCI */

_start,/* SPI x/

_start,/* PAIE */

_start,/* PAO */

_start,/* TOF */

_start,/* TOCS5 */

_start,/* TOC4 */

_start,/* TOC3 */

_start,/* TOC2 */

_start,/* TOC1 */

_start,/* TIC3 */

_start,/* TIC2 */

_start,/* TIC1 */

_start,/* RTI */

_start,/* IRQ */

_start,/* XIRQ */

_start,/* SWI */

_start,/* ILLOP */

_start,/* COP */

_start,/* CLM */

_start /* RESET */

};

#pragma end_abs_address

13.2.4 Graphics LCD Driver Header, gfxlcd.h
This header contains the function prototypes for the Toshiba dot matrix LCD driver code.

[/ ok kokokok ok ok ok skokokok o ok skokook o ok skok ok sk sk sk ok sk ok sk ok stk ok o okok ok ok ok sk sk sk sk o sk sk o ok sk o ok skok ok ok o ok ok
* DACS : Distributed Audio Control System
I —
File: gfxlcd.h

Author: Stephen S. Richardson
Date Created: 04.14.97
Environment: ICC11 v3.6, 68HC11 target

Build: library, not standalone

* ¥ X ¥ ¥

*

*

The code, executables, documentation, firmware images, and all related

155

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
ok sk Kok ko ok sk Kok ko ok ok ok ko ko kK ok sk ok kK ok sk ks kK ok sk ok ok ok ok ko ok ok ok ko ok ok ok /

#ifndef _gfxlcd
#define _gfxlcd

void gfxlcd_writecmd (unsigned char d);

void gfxlcd_writedata (unsigned char d);

void gfxlcd_cleartext (void);

void gfxlcd_textxy (unsigned char x, unsigned char y);

void gfxlcd_textout (char *s);

void gfxlcd_init (void);

void gfxlcd_btmbar (unsigned char pos, unsigned char height);

#endif

13.2.5 Graphics LCD Driver Code, gfxlcd.c

/***
* DACS : Distributed Audio Control System

File: gfxlcd.c
Author: Stephen S. Richardson
Date Created: 04.14.97
Environment: ICC11 v3.6, 68HC11 target
Build: library, not standalone

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
ok sk Kok ko ok sk Kok ok ok ok ok ks ko sk sk ok K ok sk ok ok kK ok sk Kk kK ok kK ok ok ok ko ok ok ok ko ok k ok /

¥ K K K K X X X X X

#include <hcl1l.h>
#include "gfxlcd.h"
#include "lcddefn.h"

/***

* gfxlcd_writecmd
*

* write a command byte to a graphics lcd
ok skokokok ok o ok sk sk ok ok ok ok oksk sk ok sk sk sk ok sk sk ok ok skok ok ok ok sk sk o sk sk ok o sk sk ok ok sk sk ok skok ok ok o okok sk ok ok ko ok ok kok /
void gfxlcd_writecmd (unsigned char d)

{
while (! (GFXLCD_CMD & GFXLCD_RDY));
GFXLCD_CMD=d;

}

/***

* gfxlcd_writedata
*

* write a data byte to a graphics lcd
ok skokokok ok o ok sk sk sk ok ok ok okok ok ok skokok sk ok sk sk ok ok skok ok ok ok sk sk o sk sk ok o sk sk ok ok sk sk ok skok ok ok o okokskok ok kok ko ok ok kok /

156

void gfxlcd_writedata (unsigned char d)
{
while (!(GFXLCD_CMD & GFXLCD_RDY));
GFXLCD_DATA=4d;
}

[/ ok sk sk ok ok stk ok sk ok ok stk sk ok ok stk sk sk ok sk ks sk ok stk ok ok stk sk sk ok sk sk sk ok ok sk sk sk ki sk s ok sk sk ok ok stk sk ok ok skok sk ok ok ok ok
* gfxlcd_cleartext
*
* clears the text area of a graphics lcd
stk stk sk ok sk sk skok ok sk ok ok sk sk sk ok stk sk ok sk sk sk ok sksk sk ok e ok sk sk ok sk sk sk sk ek sk sk ok stk sk sk ok sk sk ok sksk sk sk ok sksk ok sk ok kok /
void gfxlcd_cleartext (void)
{

int i;

gfxlcd_writedata (0x00);
gfxlcd_writedata (0x10);
gfxlcd_writecmd (0x24); /* text home address cmd */

for (i=0;i<320;i++) {
gfxlcd_writedata (0);
gfxlcd_writecmd (0xCO);
}
}

/***
* gfxlcd_textxy
*
* positions the cursor in the text area of a graphics lcd
ok skokokok ok o ok sk ok ko ok ok ok okok ko ok sk sk sk ok sk sk ok ok skok ok ok ok sk sk o sk sk ok o sk sk ok ok sk sk ok skokok ok o okokskok ok ok ko ok ok kok /
void gfxlcd_textxy (unsigned char x, unsigned char y)
{
unsigned int i;
unsigned char hi, lo;

i=(y*40)+x;

hi=((i&0xFF00)>>8) ;
lo=(i&0x00FF) ;

gfxlcd_writedata (lo);
gfxlcd_writedata (0x10+hi);
gfxlcd_writecmd (0x24); /* text home address cmd */

/***

* gfxlcd_textout
*

* output a string of text to the text area of a graphics lcd

157

KoK KoK KoK KoK K KoK KoK K ok KoK oK KK ok KoK KKK Kok K oK K K Kok Kok oK oK ok ok ok ok oK ok ok ok ok ok ok oK ok ok Kok ok Kk Kok ok K ok
void gfxlcd_textout (char *s)
{
while (*s) {
gfxlcd_writedata ((unsigned char) *s - 32);
gfxlcd_writecmd (0xCO);
s++;
}
}

/***
* gfxlcd_btmbar

*

* make a graphics-mode bar graph at the bottom of the display

* (looks like a fader knob)
sokokokokokokokokokokokokokokokokokokok sksksk stk sk sk sk ok ok s ok ok okok ok sk sk skl skl sk sk sk sk sk sk ok ke ok ok ok sk sksksksk sk ok sk sk sk sk ok ok ok ok kok ok /
void gfxlcd_btmbar (unsigned char pos, unsigned char height)
{

unsigned char ystop,hi,lo;

unsigned int y;

unsigned int a;

gfxlcd_writecmd (0x9C);
ystop=53-height;

for (y=53;y>0;y--) {
a=(y*40)+pos;

hi=((a&0xFF00)>>8) ;
lo=(a&0x00FF) ;

gfxlcd_writedata (lo);
gfxlcd_writedata (hi);
gfxlcd_writecmd (0x24);

if ((y==ystop) || (y==ystop-1)) {
gfxlcd_writedata (0x1F);

} else {
gfxlcd_writedata (0x04);

}
gfxlcd_writecmd (0xCO);

}

/w3 ks ok stk ok stk stk oksk skl skok sk stk ksl ksl sk ksl skok sk stk sk stk ksl sk sk skok sk stk sk ek sk sk ok ok
* gfxlcd_init
*

* initialize the Toshiba TLX-711A graphics LCD
skt ok sk ok sk ksl stk ksl ke ksl ksl sk ks ok stk st ks ksl ok sk sk ok sk kst ek s kskokok sk ko sk sk ok sksk ok /

158

void gfxlcd_init (void)
{

int i;
gfxlcd_writecmd (0x80); /* OR mode */

gfxlcd_writedata (0x00);
gfxlcd_writedata (0x00);
gfxlcd_writecmd (0x42);

gfxlcd_writedata (0x28);
gfxlcd_writedata (0x00);
gfxlcd_writecmd (0x43);

gfxlcd_writedata (0x00);
gfxlcd_writedata (0x10); /* text home address set */
gfxlcd_writecmd (0x40);

gfxlcd_writedata (0x28);
gfxlcd_writedata (0x00); /* number of text areas set */
gfxlcd_writecmd (0x41);

gfxlcd_writecmd (0x9C);

gfxlcd_writedata (0x00);
gfxlcd_writedata (0x00); /* graphic home address set */
gfxlcd_writecmd (0x42);

gfxlcd_writedata (0x00);
gfxlcd_writedata (0x00); /* address pointer set */
gfxlcd_writecmd (0x24);

for (i=0;i<2660;i++) {

gfxlcd_writedata (0x00) ;

gfxlcd_writecmd (0xCO); /* write data */
}

gfxlcd_cleartext();

gfxlcd_textxy (25,0);

gfxlcd_textout ("DACS model 112");
gfxlcd_textxy (0,7);

gfxlcd_textout ("0123456789ABCDEF") ;
gfxlcd_writecmd (0x9C);

13.2.6 Alphanumeric and Graphics LCD Driver Defines, 1cddefn.h

The following header file defines ports and other important information for the alphanumeric and
graphics LCDs present in the control board.

/***

159

* DACS : Distributed Audio Control System
I —

* File: lcddefn.h

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v3.6, 68HC11 target
* Build: library, not standalone

f=m——mm—————
* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

Kok ok ok ok K K K ok ok ok ok K K o ok ok ok ok ok ok K KK K o ok ok ok ok ok ok oK Kk K o ok ok ok ok ok oK ok K K KK ok ok ok ok ok ok ok KK K K sk ok ok ok ok ok ok Kok K kK k /

#ifndef _lcddefn
#define _lcddefn

#define GFXLCD_CMD *(unsigned char *) (0xB591)
#define GFXLCD_DATA *(unsigned char *) (0xB590)

#define GFXLCD_RDY 0x03

#define STDLCD_CMD *(unsigned char *) (0xB5F0) /* cmd port of LCD (base) */
#define STDLCD_DATA *(unsigned char *) (0xB5F1) /* data port of LCD (base) */
#define STDLCD_OFFSET 0x02 /* multiplier for multiple LCDs */

/* the Optrex 16xl1 is pretty weird - you tell the HD44780 that it’s a
* two-line display.. the first 8 chars are in the normal place, while the
* last 8 start at location 40..
*/

#define OPTREX16x1 O

#define OPTREX16x1_INIT {0x3C,0x0C,0x06,0x01,-1}

#endif

13.2.7 pbus Driver Defines, pbusdefn.h

/ ok skskskoskok ok ok sk sksk ok sk ok ok sk sk ok ok sksk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk ok ok sk sk ok sk sk sk ok ok sksk sk ok sk ok
* DACS : Distributed Audio Control System

File: pbusdefn.h
Author: Stephen S. Richardson
Date Created: 04.14.97
Environment: ICC11 v3.6, 68HC11 target
Build: library, not standalone

* X X ¥ ¥ *

*

*

The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk 3 ok ok K ok sk 3 ok 3 ok ok K ok ok ok sk K ok o ok K ok K ok K o ok 3 ok sk 3 ok 3 ok sk 3 ok 3k ok ok 3 ok sk K ok ok 3 ok k3 ok K ok ok ok sk ook ok ok ok sk k ok k /

#ifndef _pbusdefn
#define _pbusdefn

160

#define PBC_PA *(unsigned char *) (0xB580) /* pBUS controller port A */
#define PBC_PB *(unsigned char *) (0xB581) /* pBUS controller port B */
#define PBC_PC *(unsigned char *) (0xB582) /* pBUS controller port C */
#define PBC_PX *(unsigned char *) (0xB583) /* pBUS controller ctrl port */

#define PBC_IX 0x98 /* pBUS ctrl word: PA i / PB o / PCO-3 o / PC4-7 i */
#define PBC_0X 0x88 /* pBUS ctrl word: PA o / PB o / PCO-3 o / PC4-7 i */

#define PB_N_LATCH (unsigned char) 0x01 /* bitmask for latch- line */
#define PB_N_CLOCK (unsigned char) 0x02 /* bitmask for clock- line */
#define PB_N_RD_WR (unsigned char) 0x80 /* bitmask for read-/write line */

/***

* pBUS device addresses
stk sk sk sk ok o ok sk sk sk ok ok sk sk sk sk ok sksk ok ok sk sk sk ok sk sk sk ok ke sk sk sk sk ok sk sk sk sk sk sk ke k sk sk ok sksk sk ok sk sksk sk sk ok sk sk sk ok ok kok /

#define PBADX_FADEMUXO 0x08
#define PBADX_FADEMUX1 0x09

#define PBADX_FADELEDO 0x10
#define PBADX_FADELED1 Ox11
#define PBADX_FADELED2 O0x12
#define PBADX_FADELED3 0x13

#endif

13.3 Mixer Unit
13.3.1 Firmware Build, Makefile

The following GNU Makefile is used to build the firmware image for the mixer unit. A standard
Motorola S19 file is produced when the files are built. This image can be downloaded to the
EEPROM on the embedded microcontroller board using special software.

A
DACS : Distributed Audio Control System
Model 411 Modular Automated Audio Mixer / Firmware Build File

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

HH R

H O H H HH

CC = iccl1

CFLAGS =

PROGS = links mixer
MAINDIR = .

S19DIR = $(MAINDIR)/s19
0BJDIR = $(MAINDIR)/obj
DACSLIB = ../dacslib

all: $(PROGS)

#

161

set up links to DACSlib files, since iccll 3.6 can’t do what i want..
remember to change this if ’local’ copies of the 1lib funcs are used
(so they don’t get overwritten)

also change the make clean stuff if locals are used.

#

links:

rm -f SCIserial.h SCIserial.c pbus.h pbus.c stdlcd.h

rm -f stdlcd.c ACIAserial.c ACIAserial.h

1n -s $(DACSLIB)/SCIserial.c SCIserial.c

1n -s $(DACSLIB)/SCIserial.h SCIserial.h

1n -s $(DACSLIB)/ACIAserial.c ACIAserial.c

1n -s $(DACSLIB)/ACIAserial.h ACIAserial.h

1n -s $(DACSLIB)/pbus.c pbus.c

1n -s $(DACSLIB)/pbus.h pbus.h

1n -s $(DACSLIB)/stdlcd.c stdlcd.c

1n -s $(DACSLIB)/stdlcd.h stdlcd.h

buildnum:
./buildnum.pl

mixer: links buildnum

$(CC) $(CFLAGS) -omixer.s19 *.c -D_MIXER
cp mixer.s19 /tmp

chmod a+r /tmp/mixer.s19

mv mixer.s19 $(S19DIR)

mv *.0 $(0BJDIR)

clean:
rm -f mixer.s19 *.o0 *~ $(S19DIR) /mixer.s19 $(0BJIDIR)/*.0
rm -f SCIserial.h SCIserial.c pbus.h pbus.c

13.3.2 Mixer Unit Main Code, mixmain.c

The following is the main code body for the mixer unit firmware. At present, it is a test bed for
exercising the serial routines that were being developed at the time of this writing. A routine
called oldmain () contains older code that was used to implement very basic functionality of the
mixer unit. This code receives MIDI controller data on the serial port and adjusts mixer registers
accordingly. Much of the designed firmware functionality is currently unimplemented.

[k ok sk sk ok sk sk ke ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e ks sk ok sk sk ok sk ok sk sk sk sk sk ok ok
* DACS : Distributed Audio Control System

f===========
* File: mixmain.c

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target

* Build: library, not standalone

*

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

sk sk ok sk ok ok o ok ok ok ok o ok sk ok ok s ok s ok o ok sk ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok o ok ok ok ok sk ok ok ok ok ok s ok sk ok sk ok ok sk ok ok ok ok ok ok ok ok ok Kk
* Source code control:

162

*

* $Id: mixmain.c,v 1.1 1997/07/13 01:22:04 prefect Exp prefect $

*

Kok Kok K ok oK ok K ok K ok oK ok K ok K ook oK K oK K ok K ok ok ook oK ok K ok ok ok ok ok KoK ok K ok Kok KoK ok ok K ok ok ok ok K oKk ok ok ok K oK ok ok

#include <hcll.h>
#include "ACIAserial.h"
#include "pbus.h"
#include "pbusdefn.h"
#include "mixdrv.h"
#include "stdlcd.h"
#include "lcddefn.h"

struct mixer_unit_info unit;

void main (void)

{
struct raw_frame in_raw;
struct cooked_frame out_cooked;
int n;
ACIA_prep_raw (&in_raw) ;
ACIA_prep_cooked (&out_cooked);
mix_system_init(); /* initialize the mixer system */
ACIA_data_to_cooked ("First", 5, &out_cooked);
while (1) {

ACIA_service (&in_raw, &out_cooked);

if (in_raw.done==1) {
stdlcd_clrhome (HITACHI40x2) ; /* clear the LCD */
stdlcd_out (HITACHI40x2, (char *) in_raw.data);
ACIA_prep_raw (&in_raw);

} else if (in_raw.done == ERRTOOBIG) {
stdlcd_clrhome (HITACHI40x2) ; /* clear the LCD */
stdlcd_out (HITACHI40x2, "#* Frame too large **");
ACIA _prep_raw (&in_raw);

}

if ((out_cooked.done==1) && (n++>1000)) {
n=0;

ACIA_data_to_cooked ("Incoming...", 11, &out_cooked);

}

}
}

void oldmain (void)

163

unsigned char ch, r, i, j;

unsigned char chan, cmd;

unsigned char dbytes;

unsigned char brd, chip, minp, lev;

unsigned char chipmasks[]={CHIPO,CHIP1,CHIP2,CHIP3};
unsigned char datal[10];

unsigned char *dptr;

int ticks,bytes;

unsigned char spin[]={0xA5,’*’,°0’,’*’};

unsigned char spincount;

mix_system_init(); /* initialize the mixer system */
stdlcd_clrhome (HITACHI40x2) ; /* clear the LCD */

/* 1234567890123456789012345678901234567890%/
stdlcd_out (HITACHI40x2, "run [] load [1";

stdlcd_goto (HITACHI40x2, 0x40);
stdlcd_out (HITACHI40x2, "mode [8x16] mixmodules [4] outs [u] [b]");

ticks=0;
bytes=0;
cmd=0;
dbytes=0;
spincount=0;

while (1) {
if (ACIA_poll_in (&ch)) {
/* we got a character */

PBC_PC"=0x04; /* green link LED on */

if (ch&0x80) {
/* MIDI command —— MSB is set */

if (ch == OxFF) {
/* reset the mixer to a known state */
PBC_PC&="0x04; /* green link LED off */
PBC_PC"=0x08; /* red link LED on */

for (i=0;i<4;i++) {
for (j=0;j<8;j++) {
pbus_mwrite (PBADX_MIXO+i, 0x98+j, 0x98+j, 0x98+j, 0x98+j, CHIPALL);
pbus_mwrite (PBADX_MIXO+i, 63, 63, 63, 63, CHIPALL);
}
}
PBC_PC&="0x08; /* red link LED off x*/
} else {
/* set stuff for new command + data */
cmd = ch&0xFO; /* upper nybble is command */
chan = ch&0xO0F; /* lower nybble is channel */

164

dptr=data;

dbytes=0;

bytes++; /* increase bytecount for ’load’ graph */
ticks++;

} else {

*dptr=ch;

dptr++;

dbytes++;

bytes++; /* increase bytecount for ’load’ graph */
ticks++;

if ((cmd == 0xB0) && (dbytes == 2)) {
/* controller change - 1st datum=ctrl# 2nd datum=value */

/* "address decoding" for figuring out where to write */

brd = (data[0]&0x60)>>5; /* mix board # */
chip = (datal[0]&0x18)>>3; /* chip on the board */
minp = (data[0]&0x07)+0x98; /* input on chip + SSM2163 ofs */

lev = 0x7F - ((data[1]/2)&0x7F); /* attenuation level */

/* write the address */

pbus_mwrite (0x10+brd, minp, minp, minp, minp, chipmasks[chip]);
/* write the level data */

pbus_mwrite (0x10+brd, lev, lev, lev, lev, chipmasks[chip]);

}
} else {

ticks++;

if (ticks>=8192) {
/* update LCD and such, enough ticks have passed */

stdlcd_goto (HITACHI40x2, 5);
stdlcd_writechar (HITACHI40x2, spin[spincount]);

if (spincount<3) spincount++;
else {
spincount=0;

}

/*stdlcd_bar (HITACHI40x2, 14, bytes/2, 25);*/

bytes=0; /* zero byte counter */
ticks=0; /* zero ticks counter */

}
PBC_PC&="0x04; /* green link LED off */

165

13.3.3 Interrupt Vector Table, mixvect.c

The following code segment is the interrupt vector table for the mixer unit. No interrupts are
presently implemented in the firmware.

extern void _start(); /* entry point in crtll.s x/
#pragma abs_address:0xffd6

void (*interrupt_vectors[])() =
{
/* to cast a constant, say 0xb600, use
(void (*) ())0xb600
*/
/* all interrupts reset the processor */
_start,/* SCI */
_start,/* SPI %/
_start,/* PAIE %/
_start,/*x PAD *x/
_start,/* TOF */
_start,/* TOC5 */
_start,/* TOC4 */
_start,/* TOC3 */
_start,/* TOC2 */
_start,/* TOC1 */
_start,/* TIC3 */
_start,/* TIC2 */
_start,/* TIC1 */
_start,/* RTI */
_start,/* IRQ */
_start,/* XIRQ */
_start,/* SWI */
_start,/* ILLOP */
_start,/* COP */
_start,/* CLM */
_start /* RESET */
};

#pragma end_abs_address

13.3.4 Mixer Driver Header, mixdrv.h

The following header defines many values for mixer unit configuration, defines configuration
structures, and provides function prototypes.

[ok skskskosk ok ok sk sk sksk ok sk ok ok sk sk ok ok sksk sk ok sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sksk sk ok ok sk ok
* DACS : Distributed Audio Control System

*
* File: mixdrv.h
* Author: Stephen S. Richardson

166

Date Created: 04.14.97
Environment: ICC11 v4.0, 68HC11 target
Build: library, not standalone

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk s ok o ok st ok sk ok ok s ok o ok st ok ok ook sk ok ok sk sk ok stk sk sk ok ok s ok sk sk ok s ok sk sk ok ook sk ook sk ok ok ok sk o ok sk sk ok sk ok ok s ok sk ok ok ook sk kok ok ok k

*
*
*
*
*
*
*

* Source code control:

*

* $Id: mixdrv.h,v 1.1 1997/07/13 01:22:23 prefect Exp prefect $

*

Sk o K oK oK KKK KK SR K KKK KKK K SRR KK Sk SRR KKK ok KR KKK K R KRR KKK oK KRR KKK Kok ok K/

#ifndef _mixdrv
#define _mixdrv

/* masks for writing to the SSM2163’s on the mixer module cards */
#define CHIPO 0xA8
#define CHIP1 0xA2
#define CHIP2 0x8A
#define CHIP3 0x2A
#define CHIPALL 0x00

#define MAXMIXBRDS 16
#define MAXINPBRDS 4
#define MAXOUTBRDS 2
#define MAXOPTBRDS 2

[y

#define MIX_2163x4 /* ID byte for stock 4xSSM2163 mix module card */
#define MIX_2163x4V 2 /* ID byte for stock 4xSSM2163 with trim ctrl x/

#define IN_ANALOG8 1 /* ID byte for 8-input analog input card */
#define IN_DIGITAL8 2 /*x ID byte for 8-input digital input card (TBD) */

[y

#define OUT_ANALOGS /* ID byte for 8-output analog card */
#define OUT_DIGITAL8 2 /* ID byte for 8-output digital output card (TBD) */

#define OPT_BUSCOMB 1 /* ID byte for input/output bus combiner */
#define OPT_VU 2 /% ID byte for digital VU meter board */
#define NO_BRD 0 /* NO board installed */

struct mixer_unit_info {

unsigned char id; /* unit ID of this DACS mixer (from host) */
unsigned char serno[12]; /* serial number of this mixer (factory) */
unsigned char ver[30]; /* version number of firmware (compile) */

unsigned char mix_brd [MAXMIXBRDS]; /* ID bytes for mixer boards */
unsigned char mix_brds; /* number of mixer boards installed */
unsigned char inp_brd[MAXINPBRDS]; /* ID bytes for input boards */

167

unsigned char inp_brds; /* number of input boards installed */
unsigned char out_brd[MAXOUTBRDS]; /* ID bytes for output boards */

unsigned char out_brds; /* number of output boards installed */
unsigned char opt_brd[MAXOPTBRDS]; /* ID bytes for option boards */
unsigned char opt_brds; /* number of option boards installed */
unsigned char hostname[17]; /* name of host unit is connected to */

};

extern struct mixer_unit_info unit;

void mix_get_system_config (void);
void mix_system_init (void);

void mix_reset_mixers (void);
void mix_reset_buscomb (void);
void mix_reset_vu (void);

void pbus_mwrite (unsigned char addx, unsigned char dataO,
unsigned char datal, unsigned char data2,
unsigned char data3, unsigned char mask);

#endif

13.3.5 Mixer Driver Code, mixdrv.c

The following code provides the necessary underlying functionality to access the hardware of the
mixer unit.

/***
* DACS : Distributed Audio Control System

File: mixdrv.c
Author: Stephen S. Richardson
Date Created: 04.14.97
Environment: ICC11 v4.0, 68HC11 target
Build: library, not standalone

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk 3 ok ok K ok sk o ok 3 ok ok K ok ok 3 ok 3k ok K o ok K ok K 3 ok K ok ok 3 ok K 3k ok 3 ok sk 3 ok K ok ok 3 ok 3k 3 ok K ok sk K ok k3 ok K ok ok 3 ok 3k 3k ok 3 ok ok ok ok ok K
* Source code control:

*

* $Id: mixdrv.c,v 1.1 1997/07/13 01:22:41 prefect Exp prefect $
*

*
*
*
*
*
*
*
*
*
*

***/

#include <hcl1l.h>
#include "pbusdefn.h"
#include "mixdrv.h"
#include "build.h"

168

#include "lcddefn.h"
#include "stdlcd.h"
#include "serno.h"
#include "romtext.h"
#include "ACIAserial.h"

/***
* mix_get_system_config

*
* dynamically acquire the system configuration of the mixer unit by polling
* for cards

*

* TODO: make this dynamic and not hardcoded.

Kok Kok K ok oK ok K ok K ok oK ok K ok K o kKK oK Kok K o ok ook oK ok K ok ok ok ok ok KoK ok K ok KoK KK ok ok K ok ok ok ok K ok oK ok ok ok ok KK ok ok ok
void mix_get_system_config (void)

{
int i;
unit.id=0; /* this needs to be set by the host */
strcpy (unit.serno, UNIT_SERNO);
strcpy (unit.ver, build_info);
unit.mix_brd[0]=MIX_2163x4;
unit.mix_brd[1]=MIX_2163x4;
unit.mix_brd[2]=MIX_2163x4;
unit.mix_brd[3]=MIX_2163x4;
for (i=4;i<MAXMIXBRDS;i++) unit.mix_brd[i]=NO_BRD;
unit.mix_brds=4;
unit.inp_brd[0]=IN_ANALOGS;
unit.inp_brd[1]=IN_ANALOGS;
unit.inp_brd[2]=IN_ANALOGS;
unit.inp_brd[3]=IN_ANALOGS;
unit.inp_brds=4;
unit.out_brd[0]=0UT_ANALOGS;
unit.out_brd[1]=0UT_ANALOGS;
unit.out_brds=2;
unit.opt_brd[0]=0PT_BUSCOMB;
unit.opt_brd[1]=NO_BRD;
unit.opt_brds=1;

}

[/ kR ok ok skokok ok o ok skokook o ok skok ok o sk sk ko ok sk ok sk ok stk o o oksk ok ok ok sk sk ok sk sk o sk sk ok ok ok sk o ok skok ok ok o ok ok
* mix_system_init
*

* initialize the mixer hardware
ke sk 3 ok ke ok sk ok sk 3k ok 3 ok ok K ok ok 3 ok sk K ok o ok K ok k3 ok K o ok 3 ok sk 3 ok K ok sk 3 ok K ok ok 3 ok sk 3 ok 3k k ok ok k3 ok K ok ok 3 ok sk ook ok ok ok kK ok k /

169

void mix_system_init (void)

{
int i,d, brd;
int hitachi_init[J=HITACHI40x2_INIT;
unsigned char module,ch;
stdlcd_init (HITACHI40x2, hitachi_init); /* init 40x2 LCD */
stdlcd_out (HITACHI40x2, (char *) lcdmsg_intro); /* put up intro */
ACIA_init(); /* initialize the ACIA subsystem */
pbus_init(); /* initialize pBUS controller */
PBC_PC~=0x08;
mix_get_system_config(); /* poll the hardware and obtain config */
mix_reset_mixers(); /* reset all mixers to max. attenuation */
/* reset option boards */
for (i=0;i<MAXOPTBRDS;i++) {
switch (unit.opt_brdl[i]) {
case OPT_BUSCOMB:
mix_reset_buscomb(); /* reset the bus combiner board */
break;
case OPT_VU:
mix_reset_vu(); /* reset digital vu board */
break;
}
}
PBC_PC&="0x08;
/* wait around, and make the link LED green/black alternating */
for (d=0;d<40000;d++) {
PBC_PC~=0x04;
PBC_PC&="0x04;
}
stdlcd_clrhome (HITACHI40x2) ; /* clear/home the LCD */
}

/***

* mix_reset_mixers
%

* resets all of the mixer chips to maximum attenuation
stk sk sk sk ok o ok sk sk sk sk ok e ok sksk sk sk ok sksk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ke sk sk sk sk sk sk ke sk sk sk ok sksk sk ok ok sksk sk sk ok sk sk sk ko kok /

void mix_reset_mixers (void)
{

int module, ch, p;

/* turns on all mixer channels to maximum attenuation */

170

for (module=0;module<4;module++) {
for (ch=0;ch<8;ch++) {
p=0x98+ch;
pbus_mwrite (PBADX_MIXO+module, p, p, p, p, CHIPALL);
pbus_mwrite (PBADX_MIXO+module, 63, 63, 63, 63, CHIPALL);
}
}
}

/***

* mix_reset_buscomb
*

* resets the bus combiner module
ook sk ok ok ok 3 ok ok ok ok K 3 ok ok ok s ok ok ok K ok ok sk ok 3 ok ok kK sk ok ok 3 ok ok sk ok ok ok ok ok sk ok ok ok ko ok ok sk sk ok ok kK sk ok ok ok ok ok ok ok ko ok /

void mix_reset_buscomb (void)

{
pbus_lwrite (PBADX_BCOMB,0x04+0x08+0x10); /* turn off relays */

}

/K 3k ok ook sk ok sk ok sk o ok 3 ok K ok sk K ok sk 3k ok 3 ok ok 3 ok K o ok 3 o ok ok K 3 ok K ok k3 ok K ok ok K ok sk 3 ok 3 ok ok 3 ok K 3k ok 3 ok sk ok K ok K ok sk ok K ok ok ok
* mix_reset_vu
*

* resets digital vu module
ok skokokok ok o ok sk ok ko ok o ok oksk sk ok skokok sk ok sk sk ok ok skok ok ok ok sk sk o sk sk ok o sk sk ok ok sk sk ok skokok ok o okokskok ok kokokok ok ok kok /

void mix_reset_vu (void)
{

/* not currently implemented in hw */

}

/3ot kot ko ok ok ok ko kokokokokokok skt sk stk sk sk sk ok o s ok ok okok ok sk sk skl sk sk sk sk sk sk sk ok ke keok ok sk sk skskskesk sk sk sk sk sk sk ok ok ook ok ok ok ok
* pbus_mwrite

writes to a DACS mixer module containing 4 SSM2163 mixer chips.

four separate bytes are blasted in a parallel bitbanged-serial scheme.

L R I

stesksk sk ok ok ok ok ok skokokokokokkokok skok sk sk sk skok sk sk sk sk ok ok o ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk skok sk sk sk sksk sk sk sk sk sk sk sk sk ok ok ok sk kok ok /
void pbus_mwrite (unsigned char addx, unsigned char dataO,

unsigned char datal, unsigned char data2,

unsigned char data3, unsigned char mask)

unsigned char i;
unsigned char dslice;
unsigned char bitmask_msb[]={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01};

PBC_PA=0xAA; /* mix chips 1ld-/wr- inact */
PBC_PC|=PB_N_LATCH|PB_N_CLOCK; /* pBUS latch- and clock- inactive */
PBC_PB=addx |PB_N_RD_WR; /* addx on pBUS, write mode */

171

PBC_PC&="PB_N_LATCH; /* pBUS latch- active */

for (i=0;i<8;i++) {
dslice = (((dataO&bitmask_msb[i])<<i)>>7) |
(((datal&bitmask_msb[i])<<i)>>5) |
(((data2&bitmask_msb[i])<<i)>>3) |
(((data3&bitmask_msb[i])<<i)>>1);

dslice |= mask;
PBC_PC&="PB_N_CLOCK; /* pBUS clock- active */
PBC_PA=dslice; /* data slice on pBUS */
PBC_PC|=PB_N_CLOCK; /* pBUS clock- inactive */
}
PBC_PA=0xAA; /* mix chips 1ld-/wr- inact */
PBC_PC|=PB_N_LATCH; /* pBUS latch- inactive */

}

13.3.6 pbus Driver Defines, pbusdefn.h

The following header defines the locations of the Pbus controller and various Pbus addresses.

/s ok ks sk ok sk sk ok sk ok sk sk ok ok sk sk sk sk ok sk ok sk sk sk sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e ks sk ok sk sk ok sk ok sk sk sk sk sk ok ok
* DACS : Distributed Audio Control System

f===========
* File: pbusdefn.h

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target

* Build: library, not standalone

*

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

***/

#ifndef _pbusdefn
#define _pbusdefn

#define PBC_PA *(unsigned char *) (0xB580) /* pBUS controller port A */
#define PBC_PB *(unsigned char *) (0xB581) /* pBUS controller port B */
#define PBC_PC *(unsigned char *) (0xB582) /* pBUS controller port C */
#define PBC_PX *(unsigned char *) (0xB583) /* pBUS controller ctrl port */

#define PBC_IX 0x98 /* pBUS ctrl word: PA i / PB o / PCO-3 o / PC4-7 i */
#define PBC_0X 0x88 /* pBUS ctrl word: PA o / PB o / PCO-3 o / PC4-7 i */

#define PB_N_LATCH (unsigned char) 0x01 /* bitmask for latch- line */
#define PB_N_CLOCK (unsigned char) 0x02 /* bitmask for clock- line */
#define PB_N_RD_WR (unsigned char) 0x80 /* bitmask for read-/write line */

/***

172

* pBUS device addresses
st sk sk ok ok ok o o ok sk sk ok ok ok o ok sk sk ok o o ok sk sk ok o sk sk sk ok s ok sk sk sk ok sk sk sk sk o sk sk sk o sk sk ok s sk sk ok sk e ok sk ok sk o ok sk sk sk sk sk sk sk ok ok ok /

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#endif

PBADX_MIXO
PBADX_MIX1
PBADX_MIX2
PBADX_MIX3
PBADX_MIX4
PBADX_MIX5
PBADX_MIX6
PBADX_MIX7
PBADX_MIXS8
PBADX_MIX9
PBADX_MIX10
PBADX_MIX11
PBADX_MIX12
PBADX_MIX13
PBADX_MIX14
PBADX_MIX15

PBADX_INPO
PBADX_INP1
PBADX_INP2
PBADX_INP3

PBADX_BCOMB

0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1A
0x1B
0x1C
0x1D
Ox1E
0x1F

0x08
0x09
0x0A
0x0B

0x30

/* audio mix module v1.0 addresses */

/* prototype hardware ends HERE */

/* these are spec’ed, included for completeness */

/* audio input trim control v1.0 addresses */

/* bus combiner */

13.3.7 Alphanumeric LCD Driver Defines, 1cddefn.h

The following header defines specifics for the alphanumeric LCD on the mixer unit.

/***

* DACS : Distributed Audio Control System
*

* File: lcddefn.h

* Author: Stephen S. Richardson

* Date Created: 04.14.97

* Environment: ICC11 v4.0, 68HC11 target
* Build: library, not standalone

*

* The code, executables, documentation, firmware images, and all related
* material of DACS are
* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

Kok ok ok ok K K K ok ok ok ok K K 3k ok ok ok ok ok ok K K K K o ok ok ok ok oK ok oK K K Kk o ok ok ok ok ok oK ok K K K K 3 ok ok ok ok ok oK ok KoK K ok ok ok ok ok ok ok Kok K kK k /

#ifndef
#define

#define
#define

_lcddefn
_lcddefn

STDLCD_CMD
STDLCD_DATA

*(unsigned char *) (0xB5F0) /* command port of LCD (base) */
(unsigned char =) (0xB5F1) / data port of LCD (base) */

173

#define STDLCD_OFFSET 0x02 /* multiplier for multiple LCDs */
#define HITACHI40x2 O

#define HITACHI40x2_INIT {0x3C,0x0C,0x06,0x01,-1}
#endif

174

14 High-Level Software Design
14.1 Overall System: The Distributed Concept

Thus far, very little of this design document has stressed the concept of distributed audio control.
This is because much of what makes DACS distributed is implemented in the high-level system
software.

DACS takes advantage of off-the-shelf PCs and peripheral hardware. These days, powerful
PCs with network cards, CD-ROMs, and sound cards are commonplace. DACS can use any
number of networked PCs to scale to almost any conceivable audio application. For example, a
network of six PCs could be used in an audio application requiring a dozen audio CDs, six digital
audio sound cards, four separate MIDI buses, two DACS mixer units, and a control board. While
this is something of an extreme case, it merely serves to illustrate the possibilities.

To make DACS services truly distributed, a client/server approach is used. TCP/IP, a widely
available network protocol, provides a reliable way to communicate over a wide variety of com-
puter networks. The base model for DACS is communication over standard 10Mbit ethernet.
This does not preclude the use of 100Mbit ethernet, ATM, or other physical media. TCP/IP
even works on a single, non-networked host. This makes implementation easy, and allows the
distributed paradigm to be scaled down to a single PC application.

Figure 107 shows a system view of the DACS software, with emphasis on the distribution of
services. Note that where TCP/IP is seen as a communications means, the software components
may be run on separate machines.

mixer) board
irmware @ DACS mixer DACS control @ firmware
® server board server &
teplip teplip
5]
ke MIDI
; i 5 communications =3 MlD-l
g2q audio editing & =3 device
environment server chain
(future \H GUI-based
expansion) 3
=
teplip teplip
= %)
sound = Wave audio CDROM % CDROM
card % server audio server S drive
m

Figure 107: System view of DACS software components.
The central application, dubbed q2q, acts as a master to all of the various DACS components,

wherever they are located in the DACS configuration. This GUI-based program allows complex
audio scripts to be built using an intuitive interface. Editing and creation of these scripts may

175

also take place by using the control board standalone, or as a supplement to the GUL

Audio scripts can be of two overall types, time-cued or user-cued. Time-cued scripts tend to
be used in situations where SMPTE synchronization is desirable, such as in broadcast audio or
studio recording. User-cued scripts tend to be used in situations where manually starting each
cue is necessary, such as in a theatre setting. Manual cueing does not preclude the possibility of
having time-subcued audio events.

Various DACS service providers allow the q2q software to access DACS subsystems. Currently,
service providers for the mixer unit, control board, generic MIDI interfaces, generic PC sound-
cards, and generic PC CDROM drives are envisioned. Abstracting the underlying hardware from
the higher-level software provides the distinct advantage of compatibility and simplicity from the
top down. As new hardware with a similar functionality set comes along (such as a PC-based
MiniDisc drive, for example), upper-level software does not need to change much to accomodate
this new device. A generic class of transport-style devices can be created, all of which are accessed
similarly from the q2q software.

Distributing the services among several programs also reduces the problem with q2q becoming
an excessively monolithic program. This reduces memory consumption, size of the program, and
allows a much more scalable system to be built.

14.2 Functional Design
14.2.1 Service Providers

Figure 108 depicts the functional flow of a typical DACS service provider. The exact nature
of a provider depends on the specific application, but the overall structure is the same for all
providers.

SERVICE INSTANTIATION

initialize

!

wait for client to
establish connection

]

service TCP/IP

¢ yes

send necessary
) . . perform necessary .
incoming packet? —=| interpret packet — functions | data via TCP/IP T

no \l/\

perform necessary
maintenance

]

Figure 108: Functional flow diagram of a typical DACS service provider.

When the service is instantiated, it initializes itself and establishes itself as a TCP/IP server.
Upon proper contact from the client, g2q, the program enters a loop, waiting for commands from
the client and servicing requests. This loop continues until the client drops the connection. When
the connection is dropped, service providers should return to the state in which they wait for a

176

connection from a client. All running functions should stop and return to a default state if this
happens.

14.2.2 Main Application

When the q2q program is started, it initializes, and then immediately attempts to contact all
service providers. Upon completion of this, it enters one of two states, selected by the user. Edit
mode allows interactive editing of audio scripts, and they are executed in run mode. Figure 109
shows this top level of program flow.

PROGRAM INSTANTIATION

initialization

contact service
providers

edit or run mode?

edit mode run mode [—

Figure 109: Functional flow diagram of q2q at the top level.

In the run level, the program waits for cue triggers, be they manual or timed. These triggers
come from DACS service providers, such as the control board service, the MIDI service (for
SMPTE clock over MIDI), etc. If it finds that a trigger has occurred, the appropriate commands
for that audio script are dispatched to service providers. This loop continues until the user
chooses to cancel, or the script completes. Figure 110 shows this flow diagram.

In the edit mode, the program allows the audio script to be edited. This editing can take place
via the GUI or through the control board. The details of this editing are not covered in-depth
here. A simple loop in which the editing takes place is run. This loop continues until the user
enters the run mode. Figure 111 shows this flow diagram.

177

RUN MODE

initialization

=
check for trigger

dispatch commands

(time or manual)

<
e A
yes
check for cancel
- - return to edit mode
no
check for complete
yes
no
Figure 110: Functional flow diagram of gq2q in the run mode.
EDIT MODE
initialization
~

handle script editing

- ~ yes

editing complete? — = RUN MODE
N Y,
no

Figure 111: Functional flow diagram of q2q in the edit mode.

178

15 Software Graphical User Interface

The preliminary version of g2q is being built using the XForms library under a Linux/X Window
environment. This application is far from complete, but some screen shots of the forms under
development can help give a feel for what the application will look like.

Test Form

Browser line 4

Figure 112: Preliminary form for “edit cue” function.

Figure 112 shows the form for the cue editing function. Controls are available to control the
length of the cue, and whether or not the cue repeats. Audio events from the internal event
library can be added and cued at different time intervals, adjustable by the user.

Figure 113 is the form used for editing event triggering options. Time delays and triggering
after the completion of other events are possible.

Figure 114 shows the form used to build a performance stack. Cues previously defined are
added to a chronological list at the right. This list, or performance stack, can be set up to be
triggered manually or via time code.

While these forms are a far cry from a working application, they are a definite start in the
right direction. Given more time, the q2q application will be built, and will likely look something
like what these forms present.

Plans include later producing a Windows 32-bit version of g2q. This would have the distinct
advantage of tying in well with existing Windows audio applications.

179

Test Form

Browser line 2

Figure 113: Preliminary form for “edit event trigger” function.

Browser line 1

Figure 114: Preliminary form for “build performance stack” function.

180

16 Software Code

This section presents all of the code presently written to implement pieces of the software design.
It is by no means complete, but it does provide a functional test-bed for a simple mode of
operation. All code is written in ANSI C, and is intended to be compiled in a Linux environment
using GCC 2.7.1 or above.

16.1 MIDI Controller

This section lists the Linux code used to implement a simple MIDI translator for the functions
of DACS. It was mainly written to get a demo working for presentation day.

16.1.1 Main Program Code, midictrl.c

This code is the main MIDI control program. It simply exchanges MIDI-like information over
serial ports between the DACS control board, mixer unit, and a separate host PC running a
MIDI sequencing package and a special serial port MIDI driver.

[k ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk sk sk ok sk sk ke ks ks sk ok sk sk ok sk sk sk sk sk sk sk ke sk sk sk ok sk sk ok sk ok sk sk sk sk sk ok ok
* DACS : Distributed Audio Control System

f===========
* File: midictrl.c

* Author: Stephen S. Richardson

* Date Created: 04.18.97

* Environment: GNU C Compiler (GCC) v2.7.1, Linux i486 v2.0.28

* Build: make

*

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

***/

/*

* most of this code is a pretty ugly hack.. it was written hastily to get
* a demo working for presentation day.

*

* implements "dumb" mode of control board, mixer unit, cdrom

*

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>
#include <sys/types.h>
#include <time.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <netdb.h>
#include "midi.h"
#include "mixer.h"
#include "client.h"

181

#include "cdaudio_comm.h"

void oops (char *mesg)
{

perror (mesg);

exit (1);
}

void main (void)
{
struct midi_stream board, mixer, midi,;
struct mix_control mctrl;
unsigned char ch, obuf[10];
int r;
int sock_cd;
char buf_cd[CD_TCP_BUFSIZE];
struct cdtype *cd;

printf ("DACS : Distributed Audio Control System\nCopyright (C) 1997 Stephen S. Richardson / SR I
/* connect with CD audio server */

printf ("Contacting CD audio server...");

sock_cd = tcpEstablishConn ("localhost", CD_TCP_PORT);

if (sock_cd<0) oops ("tcpEstablishConn (cd audio)");

printf ("0K.\n");

cd=(struct cdtype *) buf_cd;

/* open serial & MIDI devices */

midi.fd=midi_openser("/dev/cual", B38400); /* Windows generic serial MIDI */

mixer.fd=midi_openser("/dev/cua2", B9600); /* DACS 411 mixer serial MIDI */
board.fd=midi_openser("/dev/cual", B9600); /* DACS 112 ctrlr serial MIDI */

if (!'midi.fd) oops ("can’t open midi device...");
if (!'mixer.fd) oops ("can’t open mixer device...");
if (!'board.fd) oops ("can’t open board device...");

mixer_reset (&mixer);
for (r=0;r<128;r++) mctrl.chipreg[r]=0xff;

while (1) {

if (midi_datawaiting(&midi)) {
/* there’s data waiting from the MIDI host */

midi_readstream (&midi); /* get it.. */

182

if (midi.validdata) {
/* we’ve received a whole valid command */

switch (midi.cmd) {
case MIDICMD_CONTROL:

/* it was a MIDI controller message */

if (midi.chan==0x0F) {
/* hardcoded hack: if it’s channel 15, it’s going to the mixer */
printf ("MIDI controller %x to value %x on channel %x\n", midi.data[0], midi.data[1], midi.char
/* change the controller table */
mctrl.midictrl[midi.data[0]-1]=midi.data[1];
/* call the controller translate routine */
controller_translate (&mctrl, mixer.fd);

}

break;

case MIDICMD_PROGRAM:
/* MIDI program change */

if (midi.chan==0x0E) {

/* another egregious hack, if it’s on channel 14, we control the
CD-ROM, and choose which disc to load */

printf ("MIDI program change to %d on channel %x\n", midi.data[0], midi.chan);
/* the cd data structure.. mangle appropriate elements */

cd->disc=midi.datal0];
cd->function=CD_OPEN;

/* talk to CDROM server */
tcpWriteBuffer (sock_cd, buf_cd, CD_TCP_BUFSIZE);
}
break;
case MIDICMD_NOTEON:

/* MIDI note on command */

if (midi.chan==0x0E) {

183

/* yes, another hack for the demo.. note-on starts a track on
the current cd */

printf ("MIDI note %d on with velocity %d on channel %d\n", midi.data[0], midi.data[1], midi.cl

cd->function=CD_PLAY;

cd->track=midi.data[0]+1;

cd->s_min=0;

cd->s_sec=1;

cd->d_min=73;

cd->d_sec=0;

tcpWriteBuffer (sock_cd, buf_cd, CD_TCP_BUFSIZE);

}
break;
¥
}
} else {

switch (midi.runstatus) {
case MSTOP:
printf ("MIDI stop\n");

/* when the MIDI stop code is received, stop all of our running
functions */

mixer_reset (&mixer);
midi.runstatus = 0;
cd->function=CD_STOP;
tcpWriteBuffer (sock_cd, buf_cd, CD_TCP_BUFSIZE);
cd->function=CD_CLOSE;
tcpWriteBuffer (sock_cd, buf_cd, CD_TCP_BUFSIZE);
break;
case MSTART:
printf ("MIDI start\n");

/* when the MIDI start code is received, reset some stuff.. */
mixer_reset (&mixer);
midi.runstatus = 1;
break;
case MCONT:
break;
}
if (midi_datawaiting(&board)) {
/* there’s data waiting on the board’s stripped-MIDI channel */

midi_readstream (&board);

if (board.validdata) {

184

switch (board.cmd) {
case MIDICMD_CONTROL:

if (board.chan==0x00) {
printf ("BOARD controller %x to value %x on channel %x\n", board.datal[0], board.data[l], boa:

/* send this to the MIDI host on channel 15 */

obuf [0]=0xBF;
obuf [1]=board.data[0]+1;
obuf [2]=board.datal[1];

write(midi.fd, obuf, 3);

}

break;

} else {

16.1.2 MIDI Handler Header, midi.h

This is the header file for midi.c. It defines several command bytes from the MIDI protocol as
well as gives function prototypes for the MIDI functions.

[k kok sk sk ok sk sk ok sk ok sk sk ok ok sk ok sk sk ok sk ok sk sk sk sk ok sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk ok sk sk e ks sk ok sk sk ok sk ok sk sk sk sk sk ok ok
* DACS : Distributed Audio Control System

*

* File: midi.c

* Author: Stephen S. Richardson

* Date Created: 04.21.97

* Environment: GNU C Compiler (GCC) v2.7.1, Linux i486 v2.0.28
* Build: make

*

* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

Kok ok ok ok K K ok ok ok ok K K K 3k ok ok ok ok ok ok K KK K 3 ok ok ok ok ok ok sk Kk Kk o ok ok ok ok ok oK ok K K K K K ok ok ok ok ok oK ok Kok KK ok ok ok ok ok ok ok KoKk kK k /

#ifndef _midi
#define _midi

#tdefine MIDIDATABUFSZ 10 /* size of the MIDI data buffer */

185

/* run status */
#define MSTART
#define MSTOP
#define MCONT

#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_

#define MIDICMD_
#define MIDICMD_

#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_

#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_
#define MIDICMD_

0x01
0x02
0x03

NOTEQOFF 0x80
NOTEON 0x90
AFTER 0xAO
CONTROL 0xBO
PROGRAM 0xCO
PRESS 0xDO
BEND 0xEO

SYSEXST OxFO
SYSEXEN OxF7

MTCQF OxF1
SPP OxF2
SONGSEL O0xF3
TUNEREQ OxF6

CLOCK OxF8
START OxFA
CONT OxFB
STOP OxFC
ASENSE OxFE
RESET OxFF

/%
/*
/*

/%
/%
/*
/*
/%
/%
/%

/*
/*

/%
/*
/*
/*

/%
/%
/*
/*
/%
/%

"start" received */
"stop" received */
"continue" received */

note off */

note on */
aftertouch */
controller */
program change */
channel pressure */
pitch wheel x/

sysex start */
sysex end */

MIDI time code quarter frame */
song position pointer */

song select */

tune request */

realtime: clock */
realtime: start */
realtime: continue */
realtime: stop */
realtime: active sense */
realtime: reset */

/* generic logical MIDI protocol handling structure */
struct midi_stream {

int fd;

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

cmd;

chan;

data [MIDIDATABUFSZ] ;
obuf [MIDIDATABUFSZ] ;
*dptr;

unsigned int dcount;

unsigned long
unsigned char
unsigned char
unsigned char

};

/* function prot

int midiclock;
runstatus;
resetflag;
validdata;

otypes */

/%
/%
/%
/*
/*
/%
/%
/%
/*
/*
/*

int midi_openser (char *devnam, int bd);
int midi_openmidi (char *devnam);
void midi_readstream (struct midi_stream
int midi_datawaiting (struct midi_stream

#endif

file descriptor for device */
current command */

current channel for command */
data for command */

output buffer for device */
pointer to current data */
>countdown’ expected bytes for cmd */
MIDI clock */

MIDI run status */

MIDI reset flag */

is cmd valid? */

*ms) ;
*ms) ;

186

16.1.3 MIDI Handler Code, midi.c
This code handles low-level MIDI streams. This code supports MIDI-over-serial as well as true
MIDI ports in a Linux environment.

[ok skskskosk ok ke ok sk sksk ok sk ok ok sk sk ok ok sksk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk ok ok sksk sk ok sk sk ok
* DACS : Distributed Audio Control System

f=m———m—————
* File: midi.c

* Author: Stephen S. Richardson

* Date Created: 04.21.97

* Environment: GNU C Compiler (GCC) v2.7.1, Linux 1486 v2.0.28
* Build: make

k===========

* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk 3 ok ok K ok sk 3 ok 3 ok K ok K ok ok 3 ok sk K ok o ok K ok k3 ok K o ok 3 ok sk 3k ok 3 ok sk 3 ok 3k ok ok 3 ok sk K ok Kk ok 3 ok k3 ok K ok ok s ok sk ok ok ok ok sk k ok k /

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>
#include <sys/types.h>
#include <time.h>
#include <sys/time.h>
#include "midi.h"

/***
* midi_openser
*
* opens a serial port as a virtual MIDI device.
sk sk sk ok ok ok o o ok sk ok ok ok ok o ok sk sk ok o ok sk sk ok o sk sk sk ok s ok sk sk ok ok o sk sk sk sk o ok sk sk o sk sk ok s sk sk ok sk ok sk ok sk o ok sk sk sk sk sk sk sk ok ok ok /
int midi_openser (char *devnam, int bd)
{
struct termios t;
int fd;

/* open device */
fd=open(devnam, O_RDWR|O0_NONBLOCK) ;

if (fd<1) {
fprintf (stderr, "Error opening device %s.\n", devnam);
exit (1);

}

tcgetattr (fd, &t);
/* set the port discipline */
t.c_iflag=BRKINT|IGNPAR;

t.c_oflag=0POST;
t.c_cflag=CS8|CREAD|CLOCAL;

187

t.c_1lflag=0;

cfsetospeed (&t, (speed_t) bd);
cfsetispeed (&t, (speed_t) bd);
tcsetattr (£d, TCSANOW, &t);

return (fd);
}

/3ot ok ko ok ok ok ok ok ok okokokokok ki sk stk sk sk sk o ok s ok ok ook ok sk sk ki sk sk sk sk sk sk sk ok ok ek ok sk sk skskskesk sk sk sk sk sk sk ok ok ook ok ok ok ok
* midi_openmidi
*

* opens a sound card’s midi port as a midi device
sokokokokokokokokokokokokokokokokok ook sksksk stk sk sk sk ok s ok ok okok ok sk sk skl skl sk sk sk sk sk sk ok ke ok ok ok sk sksksksk skok sk sk sk sk ok ok kokokok ok kok ok /

int midi_openmidi (char *devnam)

{
int fd;

fd=open (devnam, O_RDWR|O_NONBLOCK) ;

if (fd==-1) {
fprintf (stderr, "error opening MIDI device ¥%s.\n", devnam);
exit (1);

}

return (£fd);

/***
* midi_readstream

*

* handles reading a MIDI stream rather inefficiently.

Kok ok ok ok oK K ok ok ok ok K K 3k ok ok ok ok ok ok K K K K o ok ok ok ok ok ok oK K K K o ok ok ok ok ok oK ok K K Kk ok ok ok ok ok oK ok K K K ok ok ok ok ok ok ok KoKk ok k /
void midi_readstream (struct midi_stream *ms)
{

int r;

unsigned char ch;

do {
r=read(ms->fd,&ch,1);
} while (xr<1);

if (ch&0x80) {
/* MIDI command */

/*

first we check to see if it’s a MIDI realtime message.

Each RealTime Category message (ie, Status of 0xF8 to OxFF) consists

*
*

* from the MIDI spec:

*

*

* of only 1 byte, the Status. These messages are primarily concerned

188

* with timing/syncing functions which means that they must be sent and
* received at specific times without any delays. Because of this, MIDI
* allows a RealTime message to be sent at any time, even interspersed
* within some other MIDI message. For example, a RealTime message

* could be sent inbetween the two data bytes of a Note On message. A

* device should always be prepared to handle such a situation;

* processing the 1 byte RealTime message, and then subsequently resume
* processing the previously interrupted message as if the RealTime

* message had never occurred.

*/

if ((ch >= 0xF8) && (ch <= 0xFF)) {
/* MIDI realtime */

switch (ch) {

case MIDICMD_CLOCK:
ms—->midiclock++;
ms->validdata=0;
break;

case MIDICMD_START:
ms->midiclock=0;
ms->runstatus=MSTART;
ms->validdata=0;
break;

case MIDICMD_CONT:
ms->runstatus=MCONT;
ms—->validdata=0;
break;

case MIDICMD_STOP:
ms->runstatus=MSTOP;
ms->validdata=0;
break;

case MIDICMD_ASENSE:
ms->validdata=0;
break;

case MIDICMD_RESET:
ms->resetflag=1;
ms->validdata=0;
break;

}
} else if ((ch==MIDICMD_SYSEXST) || (ch==MIDICMD_SYSEXEN)) {
/* system exclusive */

} else {

189

/* some other kind of MIDI command */

ms->cmd = ch&O0xFO; /* upper nybble is command */
ms->chan = ch&0xOF; /* lower nybble is channel */

switch (ms->cmd) {

case MIDICMD_NOTEOFF:
ms->dptr=ms->data;
ms—->dcount=2;
ms->validdata=0;
break;

case MIDICMD_NOTEON:
ms->dptr=ms->data;
ms—->dcount=2;
ms->validdata=0;
break;

case MIDICMD_AFTER:
ms->dptr=ms->data;
ms—->dcount=2;
ms->validdata=0;
break;

case MIDICMD_CONTROL:
ms->dptr=ms->data;
ms->dcount=2;
ms->validdata=0;
break;

case MIDICMD_PROGRAM:
ms->dptr=ms->data;
ms->dcount=1;
ms->validdata=0;
break;

case MIDICMD_PRESS:
ms->dptr=ms->data;
ms->dcount=1;
ms->validdata=0;
break;

case MIDICMD_BEND:
ms->dptr=ms->data;
ms->dcount=2;
ms->validdata=0;
break;

case MIDICMD_MTCQF:
ms->dptr=ms->data;
ms->dcount=1;
ms->validdata=0;
break;

case MIDICMD_SPP:
ms->dptr=ms->data;
ms->dcount=2;
ms->validdata=0;
break;

case MIDICMD_SONGSEL:

190

ms->dptr=ms->data;
ms->dcount=1;
ms->validdata=0;
break;

case MIDICMD_TUNEREQ:
ms->dptr=ms->data;
ms->dcount=0;
ms->validdata=1; /* no data, so it’s valid right away */
break;

default:
ms->dptr=ms->data;
ms->dcount=0;
ms->validdata=0;
break;

}

}
} else {
/* MIDI data, not command */

if (ms->dcount) {
/* current MIDI command still has pending data, save it */

*ms—->dptr = ch;
ms->dptr++;
ms->dcount--;

}

/* did we get all of the data for this command? */
if (!ms->dcount) ms->validdata=1;

int midi_datawaiting (struct midi_stream *ms)
{

int fd;

fd_set fds;

struct timeval tv;

fd=ms->£fd;

bzero (&tv, sizeof (struct timeval));
tv.tv_usec = 1;

FD_ZERO (&fds);
FD_SET (fd, &fds);
while ((select (fd+1, &fds, NULL, NULL, &tv))==-1); /* make sure select */

/* works */

if (FD_ISSET (fd, &fds)) return (1);

191

else return (0);

}

16.1.4 Mixer Mid-Level Driver Header, mixer.h

This is the header file for mixer.c. This contains a structure for setting mixer register values as
well as function prototypes.

[k ok sk sk s ok sk sk ok ok sk sk ok sk sk ok ko sk sk sk ok sk ok sk sk sk ok sk sk sk sk sk sk s ok sk sk ok sk sk sk sk sk sk sk ke ksk sk sk sk ok sk ok sk sk sk sk ok ok
* DACS : Distributed Audio Control System

File: mixer.h
Author: Stephen S. Richardson
Date Created: 04.21.97
Environment: GNU C Compiler (GCC) v2.7.1, Linux 1486 v2.0.28
Build: make

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ook ok ok ok ok 3 ok ok ok ok ok 3 ok ok ok ok ok ok sk sk ok ok K ok ok kK sk ok ok sk ok ok sk ok ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok ok ok sk ok ok ok ok ok ok ok kR ok ko k /

EE R I R IR R R R

#ifndef _mixer
#define _mixer

#include "midi.h"
#define NUMCHIPREGS 128

struct mix_control {
unsigned char chipreg[NUMCHIPREGS] ; /* chip registers */
unsigned char midictrl[128]; /* MIDI controller registers */

};

void controller_translate (struct mix_control *mc, int £fd);
void mixer_reset (struct midi_stream *ms);

#endif

16.1.5 Mixer Mid-Level Driver Code, mixer.c

This code handles DACS mixer mid-level functionality. This code is mostly responsible for
handling single MIDI controller to multiple mixer register translations (e.g. pan knobs, etc.).

/3 ok sk sk sk ok sk sk s ok sk ok sk sk ok ok sk ok sk sk ok sk ok sk sk sk ok sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e ks sk ok sk sk ok sk ok sk sk sk sk sk ok ok
* DACS : Distributed Audio Control System

f===========
* File: mixer.c

* Author: Stephen S. Richardson

* Date Created: 04.21.97

* Environment: GNU C Compiler (GCC) v2.7.1, Linux i486 v2.0.28
* Build: make

192

* The code, executables, documentation, firmware images, and all related

* material of DACS are
* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

***/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>
#include <sys/types.h>
#include <time.h>
#include <sys/time.h>
#include "mixer.h"
#include "midi.h"

/***

* controller_translate

*

* translate MIDI controllers to DACS 411 mixer register data.
* kind of kludgy, but functional.

***/

void controller_translate (struct mix_control *mc, int fd)
{
float lev;
unsigned char pan, luleft[128], luright[128], newl, newr, obuf[10];
unsigned char £11,f12;
int i,r;

for (i=0;i<64;i++) {
luleft[i]=127;
luright [i]=(i*2)+1;

}

for (i=64;i<128;i++) {
luleft[1]1=127-((i-64)%*2);
luright [i]=127;

}

£11=0;
£12=0;

for (i=0;i<32;i++) {

lev=(float) mc->midictrl[i] / 127.0;
pan=mc->midictrl[i+64];

newl = (unsigned char) luleft[pan] * lev;

if (newl != mc->chipregli]) {
mc->chipreg[i] = newl;

193

if (£f11) usleep(150);

obuf [0]=MIDICMD_CONTROL;
obuf[1]=1i;
obuf [2]=newl;

r=0;
do {

r+=write (fd, obuf, 3);
} while (r<3);

f12=1;

newr = (unsigned char) luright[pan] * lev;
if (newr != mc->chipregl[i+32]) {
mc->chipreg[i+32] = newr;

if (£12) usleep (150);

obuf [0]=MIDICMD_CONTROL;
obuf [1]=1+32;
obuf [2]=newr;

r=0;
do {

r+=write (fd, obuf, 3);
} while (z<3);

fl1=1;

/KK ok sk sk ok ok K o ok oK K ok ok ok K ok ok 3 K ok ok oK 3 K ok ok 3K ok ok ok 3 ok ok K 3K 3 ok ok 3k 3 ok ok ok K ok ok 3k ok ok ok K ok ok ok 3K ok ok 3k K ok ok ok ok ok K ok ok
* mixer_reset
*

* resets the DACS mixer.
ook ok ok ok ok 3 ok ok ok ok K 3 ok ok ok 3 ok ok ok K ok ok ok ok 3 ok ok ok sk ok ok 3 ok ok K ok ok ok ok ok sk ok ok ok ko ok ok sk sk ok ok kK sk ok ok ok sk ok ok ok ko ok /

void mixer_reset (struct midi_stream *ms)
{

int r;

char resbyte=0xFF;

r=0;
do {

r=write (ms->fd, &resbyte, 1);
} while (r<1);

194

16.1.6 CDROM Service Provider Communications Header, cdaudio_comm.h

This header file provides the structure used for communication with the CDROM service provider.
It also provides command definitions. Any program using this service provider should include
this header.

[k ok sk sk ok sk sk o ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk sk sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e sk sk sk ok sk sk ok sk ok sk sk sk sk sk ok ok
* DACS : Distributed Audio Control System
CDROM audio server

material of DACS are
Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
Sk oK ok K KRR K KK SR Kk KRR K Sk ok kKSR ok K SRk Kok R SRR kKR KRR KRk kK ok

*
*
* The code, executables, documentation, firmware images, and all related
*
*

#ifndef CDAUDIO_COMM_
#define CDAUDIO_COMM_

#define CD_TCP_PORT 4202
#define CD_TCP_BUFSIZE 256

#define CD_PRG_EXIT 255

#define CD_CLOSE 1

#define CD_OPEN 2
#define CD_PLAY 10
#define CD_CUE 11

#define CD_PAUSE 12
#define CD_RESUME 13
#define CD_STOP 14
#define CD_EJECT 15

struct cdtype {

unsigned char disc; /* which disc */

unsigned char function; /* cdrom function */

unsigned char track; /* track# to perform function on */
unsigned char s_min; /* seek minute */

unsigned char s_sec; /* seek second */

unsigned char d_min; /* duration minute */

unsigned char d_sec; /* duration second */

+;
struct discinfo {

unsigned short int tsec[100];
};

#endif

195

16.1.7 CDROM Service Provider CD Function Header, cdaudio_func.h

This header file provides function prototypes and structures for accessing a CDROM for audio
playback in a Linux environment.

/R kst ok stk ok stk stk oksk skl sk ok sk stk stk stk kb sk ok sk skok sk stk ks stk ke ksl sk ksl sk ok sk sk stk sk sk sk sk ok ok
* DACS : Distributed Audio Control System
CDROM audio server

material of DACS are
Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
ok sk ko sk ok ook KRk sk ok sk kR Rk ko sk sk ok sk ko ok sk ko kR ok sk ko sk kR sk sk ok sk ok ok sk ok ok kR Rk k koK ok ok ok /

*
*
* The code, executables, documentation, firmware images, and all related
*
*

#ifndef CDAUDIO_FUNC_
#define CDAUDIO_FUNC_

#include <linux/cdrom.h>
#include "cdaudio_comm.h"

/* prefix for cdrom device */
#define CDROM_DEV "/dev/scd"

#define SUCCESS 1
#define ERROR_CDROMHW -50

struct cdhw_t {
struct cdrom_tochdr tochdr;
struct cdrom_tocentry tocentries[100];
struct cdrom_subchnl subchnl;

};

extern struct cdhw_t *read_hw (int cdfile, int *err);

extern int cdrPlay (int track, int seekmin, int seeksec, int durmin, int dursec, int cdfile, struci
extern int cdrCue (int track, int seekmin, int seeksec, int durmin, int dursec, int cdfile, struct
extern int cdrPause (int cdfile);

extern int cdrResume (int cdfile);

extern int cdrStop (int cdfile);

extern int cdrEject (int cdfile);

#endif

16.1.8 CDROM Service Provider Main Code, cdaudio_daemon.c
This code establishes the server and handles requests from a client.

[ok skskskosk ok ok ok sk sksk ok sk ok sk sk sk ok ok sksk sk ok sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk ok ok sk sk ok sk sk sk ok ok sksk sk ok ok sk ok
* DACS : Distributed Audio Control System

f===========
File: cdaudio_daemon.c

* Author: Stephen S. Richardson

* Date Created: 04.22.97

196

Environment: GNU C Compiler (GCC) v2.7.1, Linux 1486 v2.0.28
Build: make

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

Kok ok ok ok K K K ok ok ok ok K K 3k ok ok ok ok ok ok K KK K o ok ok ok ok ok ok oK K K K o ok ok ok ok ok oK ok K K K K K ok ok ok ok ok ok ok Kok K K sk ok ok ok ok ok ok Kok ok k /

*
*
*
*
*
*

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/cdrom.h>
#include "server.h"
#include "cdaudio_func.h"
#include "cdaudio_comm.h"

void oops (char *mesg)
{

perror (mesg);

exit (1);
}

int discjob (struct cdtype *cmd, int cdfd, struct discinfo *di)
{

int v=0;

switch (cmd->function) {

case CD_PLAY:
printf ("[CD Play: Track J%d seek to %2.2d:%2.2d for %2.2d:%2.2d]...\n", cmd->track, cmd->s_min
v=cdrPlay (cmd->track, cmd->s_min, cmd->s_sec, cmd->d_min, cmd->d_sec, cdfd, di);
break;

case CD_CUE:
printf ("[CD Cue: Track %d seek to %2.2d:%2.2d for %2.2d:%2.2d]...\n", cmd->track, cmd->s_min,
v=cdrCue (cmd->track, cmd->s_min, cmd->s_sec, cmd->d_min, cmd->d_sec, cdfd, di);
break;

case CD_PAUSE:
printf ("[CD Pause]...\n"); fflush (stdout);
v=cdrPause (cdfd);
break;

case CD_RESUME:

printf ("[CD Resume]...\n"); fflush (stdout);
v=cdrResume (cdfd);

197

}

break;

case CD_STOP:
printf ("[CD Stop]...\n"); fflush (stdout);
v=cdrStop (cdfd);
break;

case CD_EJECT:
printf ("[CD Eject]...\n"); fflush (stdout);
v=cdrEject (cdfd);
break;

3

if (v==SUCCESS) printf ("OK\n");
else printf ("Failed.\n");
fflush(stdout);

return (v);

int cdtracks (int cdfd, struct discinfo *di)

{

struct cdhw_t *cd;
int err, i;

printf ("[Read disc info]... \n"); fflush (stdout);
cd = read_hw (cdfd, &err);
if (err!=SUCCESS) {
printf ("Failed.\n");
fflush(stdout) ;
free (cd);
return (ERROR_CDROMHW) ;
} else {
printf ("OK.\n");
fflush(stdout) ;
di->tsec[0]=0;
for (i=cd->tochdr.cdth_trk0; i<=(cd->tochdr.cdth_trkl+1);i++) {
di->tsec[i+1]=cd->tocentries[i].cdte_addr.msf.minute*60+

cd->tocentries[i] .cdte_addr.msf.second;

}

printf ("[Track %d starts %d seconds into disc.]\n", i, di->tsec[i]);
fflush(stdout) ;
}
free (cd);
return (SUCCESS);
}

void main (void)

{

int s, sfd, ex, hlt, v=0, cdstat, cdf=-1;
struct ipaddx ip;
struct cdtype *st;

198

struct discinfo cdinfo;
char buffer[CD_TCP_BUFSIZE];
char dev[80];

printf ("DACS : Distributed Audio Control System\nCopyright (C) 1997 Stephen S. Richardson / SR I
fflush (stdout);

printf ("Attempting to establish server... \n"); fflush (stdout);

s=tcpEstablishServer ("localhost", CD_TCP_PORT);

if (s<0) oops ("cdaudio_daemon (establish server)");

hlt=0;

printf ("0K.\n");

fflush (stdout);

printf ("Waiting for client connection... \n");

while ('hlt) {
while ((tcpDataWaiting(s)) != DATA) {
usleep (100000);
/* idle */
}

sfd=tcpAcceptConn (s, &ip);

if (sfd<0) oops ("cd_daemon (accept connection)");
printf ("Accepted.\n");

fflush (stdout);

ex=0;
cdstat=CD_CLOSE;

while (ex==0) {
if (tcpDataWaiting (sfd)==DATA) {
v=tcpReadBuffer (sfd, buffer, sizeof (buffer));
if (v==ERROR_HANGUP) {
printf ("[CD Stopl...\n");
fflush (stdout);
cdrStop (cdf);
if (cdstat==CD_OPEN) {
printf ("[CLOSE CDROM device]..."); fflush (stdout);
fflush (stdout);
close (cdf);
if (cdf<0) {
printf ("Failed!\n");
fflush (stdout);
} else {
printf ("OK.\n");
fflush (stdout);
}
cdstat=CD_CLOSE;
}
printf ("Client disconnect.\nWaiting for client connection... \n");
fflush (stdout);
ex=1;

199

}
else if (v==ERROR_READ) oops ("tcp_daemon (read buffer)");
else {

st = (struct cdtype *) buffer;

/***%x HANDLE OPENING/CLOSING THE CDROM DEVICE **x*x/

if (st->function == CD_OPEN) {
if (cdstat==CD_CLOSE) {
sprintf (dev, "%s%d", CDROM_DEV, st->disc);
printf ("[OPEN CDROM device %s]...\n", dev); fflush (stdout);
cdf=open(dev, O_RDONLY);
if (cdf<0) {
printf ("Failed!\n");
fflush (stdout);
cdstat=CD_CLOSE;
} else {
printf ("O0K.\n");
fflush (stdout);
cdstat=CD_O0OPEN;
cdtracks (cdf, &cdinfo);
}
} else {
close (cdf);
sprintf (dev, "%s%d", CDROM_DEV, st->disc);
printf ("[OPEN CDROM device %s]...\n", dev); fflush (stdout);
fflush (stdout);
cdf=open(dev, O_RDONLY);
if (cdf<0) {
printf ("Failed!\n");
fflush (stdout);
cdstat=CD_CLOSE;
} else {
printf ("O0K.\n");
fflush (stdout);
cdstat=CD_0OPEN;
cdtracks (cdf, &cdinfo);
}
}
} else if (st->function == CD_CLOSE) {
if (cdstat==CD_OPEN) {
printf ("[CLOSE CDROM device]...\n"); fflush (stdout);
close (cdf);
if (cdf<0) {
printf ("Failed!\n");
fflush (stdout);
} else {
printf ("0K.\n");
fflush (stdout);
}
cdstat=CD_CLOSE;
}

200

} else if (st->function == CD_PRG_EXIT) {
printf ("Exiting.\n");
fflush(stdout);
hlt=1;
} else {
if (cdstat == CD_OPEN) {
v=discjob (st, cdf, &cdinfo);
} else {
printf ("[tried to perform a function without first opening CDROM]\n");
fflush(stdout);
}
}
}
} else {
/* idle */
usleep (2000);
}
}
}
}

16.1.9 CDROM Service Provider CD Function Code, cdaudio_func.c

This code handles talking to the CD-ROM device driver. This code is relatively specific to the
Linux environment.

[ok skskokosk ok ok sk sk sksk ok sk ok sk sk sk ok ok sk sk sk s sk sk sk sk ok sk sk ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk ok ok sk sk ok sk sk sk ok sksk sk ok ok sk ok
* DACS : Distributed Audio Control System

f=m—————————
* File: cdaudio_func.c

* Author: Stephen S. Richardson

* Date Created: 04.22.97

* Environment: GNU C Compiler (GCC) v2.7.1, Linux 1486 v2.0.28
* Build: make

k===========

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED
stk sk sk ok o ok sk sk sk ok e ok ok sk sk sk ok sksk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk sk sk sk ke ok sk sk ok sksk sk ok ok sksksk sk ok sk sk ko kok /

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>
#include <string.h>
#include <linux/cdrom.h>
#include "cdaudio_func.h"

struct cdhw_t *read_hw (int cdfile, int *err)

{

201

int i;
struct cdhw_t *hw = malloc(sizeof (struct cdhw_t));

/* read header */

if (ioctl(cdfile, CDROMREADTOCHDR, & (hw->tochdr)) == -1) {
*err=ERROR_CDROMHW ;
return(NULL) ;

}

/* read individual tracks */
for (i=hw->tochdr.cdth_trk0O; i<=hw->tochdr.cdth_trkl; i++) {
hw->tocentries[i-1].cdte_track = i;
hw->tocentries[i-1].cdte_format = CDROM_MSF;
if (ioctl(cdfile, CDROMREADTOCENTRY, &(hw->tocentries[i-1])) == -1) {
*err=ERROR_CDROMHW ;
return (NULL);
}
}

/* read the lead-out track */
hw->tocentries[hw->tochdr.cdth_trkil].cdte_track = CDROM_LEADOUT;
hw->tocentries[hw->tochdr.cdth_trkil].cdte_format = CDROM_MSF;
if (ioctl(cdfile, CDROMREADTOCENTRY, &(hw->tocentries[hw->tochdr.cdth_trk1l])) == -1) {
*err=ERROR_CDROMHW ;
return (NULL);
}

/* read subchannel info */

hw->subchnl.cdsc_format = CDROM_MSF;

if (ioctl(cdfile, CDROMSUBCHNL, &(hw->subchnl)) == -1) {
*err=ERROR_CDROMHW;
return (NULL);

}

*err=SUCCESS;
return (hw);

int cdrPlay (int track, int seekmin, int seeksec, int durmin, int dursec, int cdfile, struct disci:
{

int t;

struct cdrom_tochdr tochdr;

struct cdrom_msf msf;

struct cdrom_subchnl subchnl;

subchnl.cdsc_format = CDROM_MSF;
if (ioctl(cdfile, CDROMSUBCHNL, &subchnl) == -1) {

return (ERROR_CDROMHW) ;
}

202

if (subchnl.cdsc_audiostatus == CDROM_AUDIO_PAUSED) {
if (ioctl(cdfile, CDROMRESUME) == -1) {
return (ERROR_CDROMHW) ;
}
} else {
if (ioctl(cdfile, CDROMREADTOCHDR, &tochdr) == -1) {
return (ERROR_CDROMHW) ;
}

t=(seekmin*60)+seeksec+di->tsec[track];
msf.cdmsf_min0 = t/60;

msf.cdmsf_secO = t-(t/60)*60;
msf.cdmsf_frameO = 1;

if ((durmin==0) && (dursec==0)) {
t=di->tsec[track+1];

msf.cdmsf_minl = t/60;
msf.cdmsf_secl = t-(t/60)*60;
msf.cdmsf_framel = 1;

} else {
t=(durmin*60)+(dursec)+di->tsec[track];

msf.cdmsf_minl = t/60;
msf.cdmsf_secl = t-(t/60)*60;
msf.cdmsf_framel = 1;

}

if (ioctl(cdfile, CDROMPLAYMSF, &msf) == -1) {
return (ERROR_CDROMHW) ;
}
}
return (SUCCESS);

}

int cdrCue (int track, int seekmin, int seeksec, int durmin, int dursec, int cdfile, struct discin:

{
int t;
struct cdrom_tochdr tochdr;
struct cdrom_msf msf;
struct cdrom_subchnl subchnl;

subchnl.cdsc_format = CDROM_MSF;

if (ioctl(cdfile, CDROMSUBCHNL, &subchnl) == -1) {
return (ERROR_CDROMHW) ;

}

if (subchnl.cdsc_audiostatus == CDROM_AUDIO_PAUSED) {

203

if (ioctl(cdfile, CDROMRESUME) == -1) {
return (ERROR_CDROMHW) ;
}
} else {
if (ioctl(cdfile, CDROMREADTOCHDR, &tochdr) == -1) {
return (ERROR_CDROMHW) ;
}

t=(seekmin*60) +seeksec+di->tsec[track];
msf.cdmsf_min0 = t/60;

msf.cdmsf_secO = t-(t/60)*60;
msf.cdmsf_frameO = 1;

if ((durmin==0) && (dursec==0)) {
t=di->tsec[track+1];

msf.cdmsf_minl = t/60;
msf.cdmsf_secl = t-(t/60)*60;
msf.cdmsf_framel = 1;

} else {
t+=(durmin*60)+dursec;

msf.cdmsf_minl = t/60;
msf.cdmsf_secl = t-(t/60)*60;
msf.cdmsf_framel = 1;

}

if (ioctl(cdfile, CDROMPLAYMSF, &msf) == -1) {
return (ERROR_CDROMHW) ;
}

if (ioctl(cdfile, CDROMPAUSE) == -1) {
return (ERROR_CDROMHW) ;
}
}
return (SUCCESS);
}

int cdrPause (int cdfile)
{
if (ioctl(cdfile, CDROMPAUSE) == -1) {
return (ERROR_CDROMHW) ;

}
return (SUCCESS);

}

int cdrResume (int cdfile)

{
if (ioctl(cdfile, CDROMRESUME) == -1) {
return (ERROR_CDROMHW) ;

204

}
return (SUCCESS);
}

int cdrStop (int cdfile)
{
if (ioctl(cdfile, CDROMSTOP) == -1) {
return (ERROR_CDROMHW) ;
}
return (SUCCESS) ;
}

int cdrEject (int cdfile)
{
if (ioctl(cdfile, CDROMEJECT) == -1) {
return (ERROR_CDROMHW) ;
}
return (SUCCESS);
}

16.1.10 Serial Communications Header, serial.h

This header file defines functions and structures for the serial handling code that implements the
protocol described in the firmware section of this document.

/***
* DACS : Distributed Audio Control System

*
* File: serial.h

* Description: routines to handle serial communications with DACS components
* Author: Stephen S. Richardson

* Date Created: 07.12.97

* Environment: GNU C Compiler (GCC) v2.7.1, Linux 1486 v2.0.28

* Build: library

k===========

* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

stk sk ok ok ok K ok ok ok ok K ok sk K ok ok sk K ok ok sk K o ok ok K K ok ok sk o ok ok K ok ok ok ok ok sk sk ok ok Kk ok ok ok ko ok ok kK sk ok ok ok ok ok ok ok ok ok
* Source code control:

*

* $Id: serial.h,v 1.1 1997/07/25 12:09:25 prefect Exp prefect $

*

sk ok sk ok ok ok K ok sk ok ok K 3 ok sk K ok ok ok K ok ok sk K ok ok K K ok ok sk o ok ok K ok ok sk ok ok sk K ok ok k ok ok sk ko ok ok k ok ok ok sk ok ok k ok ok ko k /

#define SERBUFLEN 1024 /* serial buffer size */
#define MAXPAYLOAD 128 /* maximum payload size */
#define MAXFRSIZE MAXPAYLOAD+MAXPAYLOAD+4 /* maximum frame size */
#define DLE 1!’ /* data link escape character 0x10 */
#define STX [’ /* start transmission 0x02 */

#define ETX ’]° /* end transmission 0x03 */

205

struct serbuf {

char data[SERBUFLEN]; /* data in buffer */
int len; /* current length of buffer */
int cur; /* index to current data in buffer */

};

struct raw_frame {

int len; /* length of frame */
int cur; /* current index */
char data[MAXPAYLOAD]; /* frame data */

char done; /* done flag */

char dleflag; /* DLE flag */

char stxflag; /* STX flag */

};

void ser_init_frame (struct raw_frame *f);

void ser_init_serbuf (struct serbuf *b);

int ser_write_buf (struct raw_frame *fr, struct serbuf *ob);
int ser_open (char *devnam, int bd);

int ser_service (struct serbuf *ib, struct serbuf *ob,
struct raw_frame *of, int serfd);

16.1.11 Serial Communications Code, serial.c

This code implements the protocol described in the firmware protocols section of this design
document.

[sk skskoskosk ok ke ok sk sksk ok sk ok ok sk sk ok ok sksk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sksk sk ok sk ok
* DACS : Distributed Audio Control System

f===========
* File: serial.c

* Description: routines to handle serial communications with DACS components
* Author: Stephen S. Richardson

* Date Created: 07.12.97

* Environment: GNU C Compiler (GCC) v2.7.1, Linux i486 v2.0.28

* Build: library

fmm—————————
* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ook sk ok ok ok ok o ok ok ok ok ok ok ook ok ok ok ok ok ok ok ok Kk o ok ok sk ok sk ok ok ok o ok ok sk o ok ok ok o ok ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok o ok ok ok K ok ok ok

* Source code control:
*

* $Id: serial.c,v 1.1 1997/07/13 14:18:00 prefect Exp prefect $
*
***/

#include <stdio.h>

206

#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>
#include <sys/types.h>
#include <time.h>
#include <sys/time.h>
#include "serial.h"

void ser_init_frame (struct raw_frame *f)
{

f->len=0;

f->cur=0;

f->done=0;

f->dleflag=0;

f->stxflag=0;

memset (f->data, 0, MAXPAYLOAD);
}

void ser_init_serbuf (struct serbuf x*b)
{

b->len=0;

b->1en=0;

memset (b->data, 0, SERBUFLEN);
}

int ser_write_buf (struct raw_frame *fr, struct serbuf *ob)
{

int i, j=0;

/* return O if the whole frame can’t be put in the buffer.
if (ob->len + fr->len >= SERBUFLEN) return O;

/* start of frame */
ob->data[j++]=DLE;
ob->datal[j++]=STX;

/* data of frame */
for (i=0;i<fr->len;i++) {
if (fr->datal[i]l==DLE) {
ob->data[j++]=DLE;
ob->datal[j++]=DLE; /* character stuffing */
} else {
ob->datal[j++]=fr->datali];
}
}

/* end of frame */
ob->datal[j++]=DLE;
ob->datal[j++]=ETX;

207

ob->len+=j;

return (1);

}

int ser_service (struct serbuf *ib, struct serbuf *ob,
struct raw_frame *of, int serfd)

{

int r, i, j;
/* outgoing serial data? */

if (ob->len) {
r=write (serfd, ob->data, ob->len);

if (r<0) {
/* error writing. */

fprintf (stderr, "error writing to serial device.\n");
exit (1);

} else {
/* data were written */

if (r==ob->len) {
/* all data were written */

ob->len=0;
} else {
/* only some of the data were written.. shift buffer left by r */

memmove (ob->data, ob->data+r, ob->len-r);
ob->len -= r;
}
}
}

/* incoming serial data and enough space to store some of it? */
if ((ser_datawaiting (serfd)) && (ib->len < SERBUFLEN)) {
r=read (serfd, ib->data+ib->len, SERBUFLEN - ib->len);
if (r<0) {
fprintf (stderr, "error reading from serial device.\n");
exit (1);
} else {

/* data were read */

ib->len += r;

208

/* process into a frame */

for (i=0;i<ib->1len;i++) {
if (ib->datal[i] == DLE) {
/* found a DLE */
if (of->dleflag) {
/* last char was a DLE */

of->dleflag=0;

if (of->stxflag) {
of->datalof->cur++]=DLE; /* it was a character stuffed DLE */
}

} else {
/* last char was not a DLE */
of->dleflag=1;

}

} else {

/* found something other than a DLE */

if (of->dleflag) {
/* last char was a DLE */

of->dleflag=0;

if (ib->datalil == STX) {

/* found start of packet */
of->stxflag=1;

of->done=0;

of->1en=0;

of->cur=0;

} else if (ib->datal[i] == ETX) {
/* found end of packet */
of->stxflag=0;
of->len=o0f->cur;
of->done=1;

¥

} else {

/* last character was not DLE */

if (of->stxflag) {

of->datalof->cur++]=ib->datali]; /* put the data into frame */
}
}
}
}
/* reset input buffer position */
ib->cur=0;
ib->len=0;
}
}
}

209

i

{

/

i

{

nt ser_datawaiting (int serfd)

fd_set fds;
struct timeval tv;

bzero (&tv, sizeof (struct timeval));
tv.tv_usec = 1;

FD_ZERO (&fds);

FD_SET (serfd, &fds);

while ((select (serfd+1, &fds, NULL, NULL, &tv))==-1); /* make sure select */
/* works */

if (FD_ISSET (serfd, &fds)) return (1);
else return (0);

sk sk sk sk ok ok sk sk o s ok sk sk sk ok sk sk sk ok sksk s sk ok sk sk sk s ok sksk o ke ok sk sk s ok sk sk ok sk sk sk ke ok sk sk ok sk sk sk sk sk sk ok sk sk sk ok
* ser_open

*

* opens a serial port at a baud rate for NON-BLOCKING read/write

stk sk sk sk ok o ok sk sk sk sk ok e ok sk sk sk sk ok sksk ok ok sk sk sk ok sk sk sk ok ke sk sk sk sk ke sk sk sk sk sk sk ok sk sk sk ok sksk sk ok ok sksk sk sk ok sk sk sk ko kok /
nt ser_open (char *devnam, int bd)

struct termios t;
int fd;

/* open device */
fd=open(devnam, O_RDWR|O_NONBLOCK) ;

if (fd<1) {
fprintf (stderr, "Error opening serial device %s.\n", devnam);
exit (1);

}

tcgetattr (£d, &t);

/* set the port discipline */
t.c_if1lag=BRKINT|IGNPAR;
t.c_oflag=0P0OST;
t.c_cflag=CS8|CREAD|CLOCAL;
t.c_1lflag=0;

cfsetospeed (&t, (speed_t) bd);
cfsetispeed (&t, (speed_t) bd);
tcsetattr (£fd, TCSANOW, &t);

return (fd);

210

16.1.12 TCP/IP Client Library Header, client.h

This header provides defines and function declarations for the TCP/IP client library.

/s kst ok stk ok stk stk oksk skl sk ok sk ok stk stk stk ks sk ksl skok sk stk sk stk ksl sk sk skok sk sk stk sk ek sk sk ok ok
* DACS : Distributed Audio Control System

f===========
* File: client.h

* Description: TCP/IP client routines, header file

* Author: Stephen S. Richardson

* Date Created: 04.23.95

* Environment: GNU C Compiler (GCC) v2.7.1, Linux i486 v2.0.28

* Build: library

*

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

KoK KKK KoK oK oK KK oK K oK K ok K ok KoK KoK ok K oK K KKK ok K oK K K K K ok Kok oK ok ok ok ok ok oK ok oK ook ok K ok ok ok ok K ok K ok ok Kok K ok K K
* Source code control:

*

* $Id: client.h,v 1.1 1997/07/25 12:15:48 prefect Exp prefect $

*

Kok KoK KoK KoK K Kok K oK K ok KoK KoK KK ok K oK K KKK ok K oK K K KK ok Kok K ok ok ok oK ok oK ok ok ok ok ok ok ok ok ok Kok ok Kk Kok ok ok

#ifndef CLIENT_
#define CLIENT_

#define DATA 1
#define NODATA

#define SUCCESS 1

#define ERROR_BADHOST -10
#define ERROR_SOCKET -11
#define ERROR_CONNECT -12
#define ERROR_KILL -13
#define ERROR_WRITEFAILED -14
#define ERROR_HANGUP -15
#define ERROR_READ -16

extern int tcpEstablishConn (char *hostname, int port);

extern int tcpKillConn (int £d);

extern int tcpWriteBuffer (int fd, char *buffer, size_t bufsize);
extern int tcpDataWaiting (int sfd);

extern int tcpReadBuffer (int fd, char *buffer, int bufsize);

#endif

16.1.13 TCP/IP Client Library Code, client.c

The following code provides easy access to Berkeley TCP /IP sockets in a Unix (Linux) environ-
ment.

211

/3 ok sk sk ok sk sk ok ok sk ok sk sk ok ok sk ok sk sk ok sk ok sk sk sk sk sk ke ks e ks sk ok sk sk ok sk sk sk sk sk sk sk e ks sk ok sk sk ok sk ok sk sk sk sk ok ok ok
* DACS : Distributed Audio Control System

File: client.c
Description: TCP/IP client routines
Author: Stephen S. Richardson
Date Created: 04.23.95
Environment: GNU C Compiler (GCC) v2.7.1, Linux 1486 v2.0.28
Build: library

The code, executables, documentation, firmware images, and all related
material of DACS are

Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

ke sk 3 ok ok K ok sk o ok 3 ok K ok K ok ok 3 ok 3k 3 ok K o ok K ok K 3 ok K ok ok 3 ok K 3k ok 3 ok sk 3 ok K ok ok 3 ok 3k 3 ok K ok sk K ok k3 ok 3k ok ok 3 ok 3k ok ok 3 ok ok ok ok ok K

EE R R R R R TR R

* Source code control:

*

* $Id: client.c,v 1.1 1997/07/25 12:15:44 prefect Exp prefect $

*

Kok Kok K ok oK ok K ok K ok K ok K ok K ok kKKK oK K ok K ok ok ook oK ok K ok ok ok ok ok KoK ok K ok Kk KK ok ok K ok ok ok ok K sk oK ok ok ok Kk oK ok ok

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <fcntl.h>
#include <unistd.h>
#include <netdb.h>
#include <time.h>
#include <sys/time.h>
#include "client.h"

//kokokokokok ok ok ok ok ok ok ok ok ok kok skok sksk sk sksksksk sk sk ok ok o ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk skok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk ok ok ok ok
attempts to connect to an ip and tcp port, returning an fd of the socket

returns the file descriptor of the socket or

ERROR_BADHOST - hostname or ip specified is bogus

ERROR_SOCKET - the ’socket’ command failed

ERROR_CONNECT - the ’connect’ command failed

st ok ok sk o ok ok K ok ok ok o ok sk K ok ok ok 3 ok ok ok K ok ok Kk 3 ok ok kK sk ok sk s ok ok sk ok ok ok ok ok sk ok ok ok ko ok ok ok sk ok ok sk k ok ok ok ok ok ok ok ok ok /

int tcpEstablishConn (char *hostname, int port)
{

struct sockaddr_in bba;

struct hostent *hp;

int s;

memset (&bba, 0 , sizeof (bba));

bba.sin_family = AF_INET;
hp = gethostbyname (hostname) ;

212

if (hp == NULL) return (ERROR_BADHOST) ;
memcpy (&bba.sin_addr, hp->h_addr, hp->h_length);
bba.sin_port = htons ((unsigned short int) port);

s = socket (AF_INET,SOCK_STREAM,O0);

if (s == -1) return (ERROR_SOCKET);

if (connect (s, (struct sockaddr *) &bba, sizeof (bba)) !=0)
return (ERROR_CONNECT) ;

return s;

/ ok stk sk ke ok sk sk o sk ok ok sk sk ok stk o s sk sk ok s ok sk o s ok sk o o ok ok sk o e ok sk sk sk ke stk s sk sk sk o ok sk ok ok sk ok o ok ok
kills (disconnects) a socket

returns SUCCESS if it worked or

ERROR_KILL if it couldn’t be disconnected
st ok ok sk o ok ok K ok ok ok o ok ok K ok ok ok s ok ok ok K ok ok sk ok 3 ok ok kK sk ok ok 3 ok ok sk ok ok ok ok ok sk ok ok ok ko ok ok sk sk ok ok sk sk ok ok ok ok ok ok ok ko ok /

int tcpKillConn (int f£d)
{

int retcode;

retcode = close (fd);
if (retcode==-1) return (ERROR_KILL);
else return (SUCCESS);

}

/ sk sk sk ok sk o ok sk sk sk sk ok sk ok sk sk ok sk o sk sk sk o sk sk ok s ok sk ok ok o ok sk ok sk s ok sk sk sk ok e sk sk sk s o ok sk sk o sk sk ok sk ok sk sk ok sk o ok sk ok sk o ok kok ok
writes out buffer of size bufsize to an open file descriptor (a socket)

returns number of bytes written or

ERROR_WRITEFAILED - write failed
st sk ok ok sk ok ok ok ok ok ok ok sk sk ok sk ok ok ook sk ok ok sk ok sk ok s sk sk ok ok sk ok ok ok ok sk sk ok sk ok sk ok ok sk sk ok sk ok ok sk ok sk ok sk sk ok sk ok ok sk sk sk ok ok sk ok ok sk sk ok ok /

int tcpWriteBuffer (int fd, char *buffer, size_t bufsize)
{

int retcode;
retcode=write (fd, buffer, bufsize);
if (retcode==-1) {

return (ERROR_WRITEFAILED);
}

else return (retcode);

213

[ok skskoskosk ok ok ok sk sksk ok sk ok ok sk sk ok ok sksk sk ok sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sksk sk ok ok sk ok
synchronous I/0 multiplexer - detects if there’s stuff waiting using select
doesn’t disturb the file descriptor set you send

returns DATA if there’s data, or NODATA if there’s none

**/

int tcpDataWaiting (int sfd)
{

fd_set fds;

struct timeval tv;

bzero (&tv, sizeof (struct timeval));
tv.tv_usec = 1;

FD_ZERO (&fds);

FD_SET (sfd, &fds);

while ((select (sfd+1, &fds, NULL, NULL, &tv))==-1); /* make sure select */
/* works */

if (FD_ISSET (sfd, &fds)) return (DATA);
else return (NODATA);

[/ skskskokoskok ok ok ok sksk ok sk ok ok sk sk ok ok sk sk sk s sk sksk ok ok sk sk sk ok sk sk sk ok sk sk sk sk ke sk sk sk sk o sk sk sk ok ok sk sk ok ok sksk sk ok ok sk sk sk sk ok sk sk ok
reads bytes from a socket file descriptor, putting them into the buffer

returns number of bytes read, or
ERROR_HANGUP if the socket has been disconnected

**/

int tcpReadBuffer (int fd, char *buffer, int bufsize)
{

int count;

count=read (fd, buffer, bufsize);
if (count==0) {
close (fd);
return (ERROR_HANGUP) ;
} else if (count==-1) {
return (ERROR_READ);
}

else return (count);

214

16.1.14 TCP/IP Server Library Header, server.h

This header provides definitions and function prototypes for the TCP/IP server library functions.

[ok skskskosk ok ok sk sk sk sk ok sk ok ok sk sk ok ok sk sk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk sk ke sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sksk sk ok sk ok
* DACS : Distributed Audio Control System

*
* File: server.h

* Description: TCP/IP server routines, header file

* Author: Stephen S. Richardson

* Date Created: 04.23.95

* Environment: GNU C Compiler (GCC) v2.7.1, Linux 1486 v2.0.28
* Build: library

fmm———m—————

* The code, executables, documentation, firmware images, and all related

* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

stk sk ok ok ok K ok sk ok ok K ok sk K ok ok ok K ok ok sk K o ok ok K K ok ok sk o ok ok K ok ok sk ok ok sk sk ok ok K k sk ok ok ko ok ok kK sk ok ok 3k ok ok ok ok ok ok ok
* Source code control:

*

* $Id: server.h,v 1.1 1997/07/25 12:15:41 prefect Exp prefect $

*

sk sk ok ok ok K ok sk ok ok K ok sk K ok ok sk ok ok sk K o ok ok K K ok ok sk o ok ok K ok ok sk ok ok sk ok ok ok k ok ok sk ko ok ok k ok ok ok sk ok ok ok ok ok sk k k /

#ifndef SERVER_
#define SERVER_

#define DATA 1
#define NODATA

#define SUCCESS 1
#define ERROR_KILL -13
#define ERROR_WRITEFAILED -14
#define ERROR_HANGUP -15
#define ERROR_READ -16
#define ERROR_BADHOST -100
#define ERROR_SOCKET -101
#define ERROR_BIND -102
#define ERROR_LISTEN -103
#define ERROR_ACCEPT -104

struct ipaddx {
unsigned char first;
unsigned char second;
unsigned char third;
unsigned char fourth;
} ipaddx;

extern int tcpEstablishServer (char *hostname, int port);

extern int tcpAcceptConn (int s, struct ipaddx *ip);
extern int tcpKillConn (int £d);

215

extern int tcpWriteBuffer (int fd, char *buffer, size_t bufsize);
extern int tcpDataWaiting (int sfd);
extern int tcpReadBuffer (int fd, char *buffer, int bufsize);

#endif

16.1.15 TCP/IP Server Library Code, server.c

The following code provides easy access to Berkeley sockets to set up a server in a Unix environ-
ment.

/w3 kst ok stk ok stk stk oksk skl skok sk stk stk stk ks sk ksl skok sk stk ks stk ksl s sk skok sk sk stk sk ek sk sk ok ok
* DACS : Distributed Audio Control System

f===========
* File: server.c

* Description: TCP/IP server routines

* Author: Stephen S. Richardson

* Date Created: 04.23.95

* Environment: GNU C Compiler (GCC) v2.7.1, Linux i486 v2.0.28

* Build: library

*

* The code, executables, documentation, firmware images, and all related
* material of DACS are

* Copyright (C) 1997 Stephen S. Richardson - ALL RIGHTS RESERVED

Kok KoK KK K oK KK oK K oK K ok K ok KoK KoK ok K oK K K Kok K oK K K K K ok Kok K ok ok ok oK ok oK ok ok ook ok K ok Kok ok ok K ok K ok ok Kok K ok K K
* Source code control:

*

* $Id: server.c,v 1.1 1997/07/25 12:15:37 prefect Exp prefect $

*

KoK KoK KoK KoK KoK K oK K ok KoK oK KR K ok KKK KK Kok K oK K oK K Kok Kok K oK ok ok oK ok K ok ok ok ok ok ok ok ok Kok ok Kk Kok ok K ok /

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include "server.h"

/3ot ok ok kot ok ok ok okokokokok ki sk stk sk sk sk o ok s ok ok okok ok sk sk skl sk sk sk sk sk sk sk ok ok keok ok sk sk skskskesk sk ok sk sk sk sk ok ok ook ok ok ok ok
establishes a tcp server on hostname at port

returns a socket if it works, or

ERROR_BADHOST if a bad host was specified

ERROR_SOCKET if there’s a socket error

ERROR_BIND if there’s a bind error

ERROR_LISTEN if there’s a listen error
***/

216

i

{

/

i

{

nt tcpEstablishServer (char *hostname, int port)

struct sockaddr_in saddr;
struct hostent *hp;
int s;

memset (&saddr,0,sizeof (saddr));
saddr.sin_family = AF_INET;

hp = gethostbyname (hostname);

if (hp == NULL) return (ERROR_BADHOST);

bzero ((char *) &saddr.sin_addr, hp->h_length);
saddr.sin_port = htons (port);

s = socket (AF_INET,SOCK_STREAM,O0);
if (s== -1) return (ERROR_SOCKET);

if (bind (s, (struct sockaddr *) &saddr, sizeof (saddr)) !'=0)
return (ERROR_BIND);

if (listen (s,1) !=0) return (ERROR_LISTEN); /* queue 1 request only */

return (s);

3k 3k 5k >k 3k 3k 5k >k 3k 3k sk >k 3k Sk Sk ok ok >k 3k Sk ok sk >k 3k >k Sk Sk ok >k >k Sk 3k sk ok ok >k 3k Sk ok sk >k >k 3k Sk ok ok >k 3k >k 5k Sk ok %k >k Sk Sk ok %k >k >k 3k sk ok ok %k k 3k ok >k >k %k 3k k ok k k k&
accepts a connection from a client, returning a socket file descriptor

needs the port socket and an ipaddx pointer passed to it (it gets filled in
with the ip address of the host connecting to the server)

returns socket file descriptor, or

ERROR_ACCEPT if accept errors out more than 255 times.
stk sk sk sk ok o ok sk sk sk ok e ok sk sk sk sk ok sksk ok ok sk sk sk ok sk sk sk sk ke sk sk sk sk ke sk sk sk sk sk sk ke sk sk sk ok sksk sk ok sksk sk sk ok sk sk sk ko kok /

nt tcpAcceptConn (int s, struct ipaddx *ip)

struct sockaddr_in addr;
struct hostent *b;
int sfd, addrlen, x=0;

addrlen = sizeof (struct sockaddr_in);

do {
sfd = accept (s, (struct sockaddr *) &addr,&addrlen);
X++;

} while ((sfd<0)&&(x<=255));
if (x>=255) return (ERROR_ACCEPT);

217

b = gethostbyaddr ((char *)&addr.sin_addr.s_addr, sizeof (addr.sin_addr.s_addr),AF_INET);

ip->first = addr.sin_addr.s_addr & 0x0OOOOOOFF;

ip->second = (addr.sin_addr.s_addr & 0xO00O0FF00)>>8;
ip->third = (addr.sin_addr.s_addr & 0xOOFF0000)>>16;
ip->fourth = (addr.sin_addr.s_addr & O0xFF000000)>>24;

return (sfd);

/3 stk ok o stk sk o stk ok stk ko sk ks sk ok sk o stk sk o stk ko sk ook sk ok sk ok o stk sk ok sk ok ko sk ook sk ok sk ok o stk sk sk ok ok ok ok
kills (disconnects) a socket

returns SUCCESS if it worked or

ERROR_KILL if it couldn’t be disconnected
K 3 ok ok ok ok K K K ok ok ok ok K KK o ok ok ok ok ok ok ok KoK K K K 3k ok ok ok ok ok ok Kok K K ok ok ok ok ok ok ok KoK K K K 3k o ok ok ok ok ok K K KK 3k ok ok ok ok ok ok KK K Kk /

int tcpKillConn (int fd)
{

int retcode;

retcode = close (fd);
if (retcode==-1) return (ERROR_KILL);
else return (SUCCESS);

}

[ok skskoskosk ok ok ok sk sksk ok sk ok ok sk sk ok ok sksk sk sk sk sk ok sk ok ok sk sk sk ok sk sk sk ok ke sk sk sk sk ke sk sk sk sk ok sk sk sk ok sk sk sk ok sksk sk ok sk ok
writes out buffer of size bufsize to an open file descriptor (a socket)

returns number of bytes written or

ERROR_WRITEFAILED - write failed
stk sk o ok sk sk sk ok ko sk sk sk sk ok sk ok sk ok sksk sk sk sk sk ok sk ok ok sk ki sk sk sk sk sk sk ok sk ok sk sksk sk sk sk sk sk ok ok sk ok sksk sk sk skok sk ko kok sk sk sk kok sk kok ok /

int tcpWriteBuffer (int fd, char *buffer, size_t bufsize)

{
int retcode;
retcode=write (fd, buffer, bufsize);
if (retcode==-1) {
return (ERROR_WRITEFAILED);
}

else return (retcode);

/***

218

*

i

{

/

*

i

{

synchronous I/0 multiplexer - detects if there’s stuff waiting using select
returns DATA if there’s data, or NODATA if there’s none

stk ok ok ok ok ok sk kR sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok oKk oK koK KoK ok KKk sk sk koK sk ko sk sk sk ok ok ok ok /
nt tcpDataWaiting (int sfd)

fd_set fds;
struct timeval tv;

bzero (&tv, sizeof (struct timeval));
tv.tv_usec = 1;

FD_ZERO (&fds);

FD_SET (sfd, &fds);
while ((select (sfd+1, &fds, NULL, NULL, &tv))==-1); /* make sure select */
/* works */

if (FD_ISSET (sfd, &fds)) return (DATA);
else return (NODATA);

stk sk ok sk sk o ok sk ok s ok sk sk sk sk ok sk sk s ok sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok ks sk sk sk ok sk ok sk sk sk sk sk ke ks s ok sk sk ok sk sk ok sk ok
reads bytes from a socket file descriptor, putting them into the buffer

returns number of bytes read, or
ERROR_HANGUP if the socket has been disconnected

***/
nt tcpReadBuffer (int fd, char *buffer, int bufsize)
int count;

count=read (fd, buffer, bufsize);
if (count==0) {
close (fd);
return (ERROR_HANGUP) ;
} else if (count==-1) {
return (ERROR_READ) ;
}

else return (count);

219

A VHDL Code

This appendix includes the VHDL code used to synthesize the logic for the GAL16V8 devices
used as Pbus address decoders throughout the system. It is important to note that individualized
addresses were required for each board in the systems. This required essentially identical VHDL
code for duplicate boards, with the actual address changed. In these cases, only a representative
piece of VHDL code is included. It should be clear to those familiar with VHDL how to change
the actual decoded addresses. Each piece of code forces the pinouts, rather than allowing the
compiler to handle those decisions. This was done because the PC boards were designed in
advance of the GALs, with an assumed pinout.

All of the VHDL code is well commented, thus no additional description is given with the
code. For each piece of VHDL code, the pin report is included for reference.

The VHDL code was compiled into standard JEDEC files through the use of the Cypress
Warp VHDL Synthesizer, running on the author’s Sun SPARCstation IPC. The Atmel GALs
were programmed using a universal programmer in the WPI ECE Shop.

A.1 Control Board
A.1.1 Fader Module
The VHDL code for a fader module decode GAL is shown below.

-— DACS : Distributed Audio Control System

-- Copyright (C) 1997 Stephen Scott Richardson
-- File: fader-1.vhd

-- Date: 03.13.97

-- Target: Atmel ATF16V8B

-- Fader board pbus address decoding GAL

-- first fader board

-- pbus addx function dir (from uC)
-- 0x08 a/d mux n_ena out
-- 0x10 led group 1 ena out
-- Ox11 led group 2 ena out

ENTITY fade_decode IS

PORT (

addx_in : IN bit_vector (6 DOWNTO 0);
nlatch_in : IN bit;

nread_write_in : 1IN bit;

mux_nena_out : 0UT bit;

led_ena_2_out : 0UT bit;

led_ena_1_out : OUT bit;

nsense_out : 0OUT bit

)

-- Force a package and a pinout
ATTRIBUTE part_name of fade_decode:entity is "C16V8";

220

ATTRIBUTE pin_numbers of fade_decode:entity is
"nread_write_in:1 nlatch_in:2 addx_in(0):3 addx_in(1):4
addx_in(2):5 addx_in(3):6 addx_in(4):7 addx_in(5):8
addx_in(6) :9 nsense_out:12 led_ena_1_out:13
led_ena_2_out:14 mux_nena_out:15";

END fade_decode;

ARCHITECTURE behavior OF fade_decode IS

BEGIN

PROCESS (nlatch_in, addx_in, nread_write_in)

BEGIN

IF nlatch_in = ’0’ AND nread_write_in = ’1’
AND addx_in = "0001000" THEN

-- pbus 0x08

mux_nena_out <= ’0’; -- mux nena ACTIVE
nsense_out <= ’0’; —-- pbus nsense ACTIVE
led_ena_1_out <= ’0’; -- led 1 ena INACTIVE
led_ena_2_out <= ’0’; -- led 2 ena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0010000" THEN

-- pbus 0x10

mux_nena_out <= ’1°’; -- mux nena INACTIVE
nsense_out <= ’0’; —-- pbus nsense ACTIVE
led_ena_1_out <= ’1’; -- led 1 ena ACTIVE
led_ena_2_out <= ’0’; -- led 2 ena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0010001" THEN

-- pbus 0x11

mux_nena_out <= ’1°’; —-- mux nena INACTIVE
nsense_out <= ’0’; -- pbus nsense ACTIVE
led_ena_1_out <= ’0’; -- led 1 ena INACTIVE
led_ena_2_out <= ’1’; -- led 2 ena ACTIVE
ELSE

-- not active

mux_nena_out <= ’17; -- mux nena INACTIVE
nsense_out <= ’1’; -- pbus nsense INACTIVE
led_ena_1_out <= ’0’; -- led 1 ena INACTIVE
led_ena_2_out <= ’0’; -- led 2 ena INACTIVE
END IF;

END PROCESS;

221

END behavior;

The pin report for the fader module decode GAL is shown below.

C16V8A

nread_write_in =| 1] |20]* not used
nlatch_in =| 2| |19]* not used
addx_in_0 =| 3| |18]* not used
addx_in_1 =| 4| |17 |* not used
addx_in_2 =]| 5] |16]* not used
addx_in_3 =| 6] |15]= mux_nena_out
addx_in_4 =| 7| |14]= led_ena_2_out
addx_in_5 =| 8| |13]= led_ena_1_out
addx_in_6 =| 9] |12]= nsense_out
not used *|[10] [11]* not used

A.1.2 Output Assign Module

The VHDL code used to synthesize the logic for the output assignment module decode GAL is
shown below.

—-— DACS : Distributed Audio Control System

-- Copyright (C) 1997 Stephen Scott Richardson
- File: outassn.vhd

-- Date: 03.13.97

-- Target: Atmel ATF16V8B

—-—- Output assign board pbus address decoding GAL

-- pbus addx function dir (from uC)
-- 0x14 led group 1 ena out
-- 0x15 led group 2 ena out
-- 0x16 7 segment ena out
-- 0x30 button grp 1 nena in
-- 0x31 button grp 2 nena in
-- 0x32 button grp 3 nena in

ENTITY outassn_decode IS

PORT (

addx_in : IN bit_vector (6 DOWNTO 0);
nlatch_in : IN bit;

nread_write_in : 1IN bit;

btn_1_nena_out : OUT bit;

btn_2_nena_out : OUT bit;

btn_3_nena_out : O0OUT bit;

seg7_ena_out : 0UT bit;

led_ena_2_out : 0UT bit;

222

led_ena_1_out : 0OUT bit;
nsense_out : O0UT bit

)

-- Force a package and pinout

ATTRIBUTE part_name of outassn_decode:entity is "C16V8";

ATTRIBUTE pin_numbers of outassn_decode:entity is

"nread_write_in:1 nlatch_in:9 addx_in(0):2 addx_in(1):3

addx_in(2):4 addx_in(3):5 addx_in(4):6 addx_in(5):7
addx_in(6) :8 nsense_out:12 btn_1_nena_out:13
btn_2_nena_out:14 btn_3_nena_out:15 seg7_ena_out:16
led_ena_2_out:17 led_ena_1_out:18";

END outassn_decode;

ARCHITECTURE behavior OF outassn_decode IS

BEGIN

PROCESS (nlatch_in, addx_in, nread_write_in)

BEGIN

IF nlatch_in = ’0’ AND nread_write_in = ’1’
AND addx_in = "0010100" THEN

-- pbus 0Ox14

nsense_out <= ’0’; —-- pbus nsense ACTIVE
led_ena_1_out <= ’1’; -- led 1 ena ACTIVE
led_ena_2_out <= ’0’; -- led 2 ena INACTIVE
seg7_ena_out <= ’0’; -- 7seg ena INACTIVE
btn_3_nena_out <= ’1’; -- btn 3 nena INACTIVE
btn_2_nena_out <= ’1’; -- btn 2 nena INACTIVE
btn_1_nena_out <= ’1’; -- btn 1 nena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0010101" THEN

-- pbus 0x15

nsense_out <= ’07; -- pbus nsense ACTIVE
led_ena_1_out <= ’0’; -- led 1 ena INACTIVE
led_ena_2_out <= ’1’; -- led 2 ena ACTIVE
seg’7_ena_out <= ’0’; -- T7seg ena INACTIVE
btn_3_nena_out <= ’1’; -- btn 3 nena INACTIVE
btn_2_nena_out <= ’1’; -- btn 2 nena INACTIVE
btn_1_nena_out <= ’1’; -- btn 1 nena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0010110" THEN

-- pbus 0x16

223

nsense_out <= ’07;

led_ena_1_out <= ’0’;
led_ena_2_out <= ’0’;
seg’7_ena_out <= ’17;

btn_3_nena_out <= ’17;
btn_2_nena_out <= ’1’;
btn_1_nena_out <=

ELSIF nlatch_in =

117;

’0’ AND nread_write_in =

-- pbus nsense ACTIVE
-- led 1 ena INACTIVE
-— led 2 ena INACTIVE
-- T7seg ena ACTIVE

-- btn 3 nena INACTIVE
-- btn 2 nena INACTIVE
-- btn 1 nena INACTIVE

707

AND addx_in = "0110010" THEN

-- pbus 0x32 (read)

nsense_out <= ’0’;

led_ena_1_out <= ’0’;
led_ena_2_out <= ’0’;
seg7_ena_out <= ’0’;

btn_3_nena_out <= ’0’
btn_2_nena_out <= 1’
btn_1_nena_out <= 1’

ELSIF nlatch_in = ’0’
AND addx_in =

-- pbus 0x31 (read)

nsense_out <= ’07;

led_ena_1_out <= ’0’;
led_ena_2_out <= ’0’;
seg’7_ena_out <= ’0’;

btn_3_nena_out <= ’1’
btn_2_nena_out <= ’0’
btn_1_nena_out <= ’1’
ELSIF nlatch_in = ’0’

; —— btn
; —— btn
; —— btn

; —— btn
; —— btn
; —— btn

—-- pbus nsense ACTIVE
-— led 1 ena INACTIVE
-- led 2 ena INACTIVE
-— 7seg ena INACTIVE

3 nena ACTIVE

2 nena INACTIVE
1 nena INACTIVE

AND nread_write_in = ’0’

"0110001" THEN

-- pbus nsense ACTIVE
-- led 1 ena INACTIVE
-- led 2 ena INACTIVE
-- 7seg ena INACTIVE

3 nena INACTIVE
2 nena ACTIVE

1 nena INACTIVE

AND nread_write_in = ’0’

AND addx_in = "0110000" THEN

-- pbus 0x30 (read)

nsense_out <= ’0’;

led_ena_1_out <= ’0’;
led_ena_2_out <= ’0’;
seg7_ena_out <= ’07;

btn_3_nena_out <= 1’
btn_2_nena_out <= 1’
btn_1_nena_out <= ’0’

ELSE

; —— btn
; —— btn
; —— btn

—-- pbus nsense ACTIVE
-- led 1 ena INACTIVE
-- led 2 ena INACTIVE
-- 7seg ena INACTIVE

3 nena INACTIVE
2 nena INACTIVE
1 nena ACTIVE

224

-- not active

nsense_out <= ’1’; -- pbus nsense INACTIVE
led_ena_1_out <= ’0’; -- led 1 ena INACTIVE
led_ena_2_out <= ’0’; -- led 2 ena INACTIVE
seg7_ena_out <= ’0’; -- 7seg ena INACTIVE
btn_3_nena_out <= ’1’; -- btn 3 nena INACTIVE
btn_2_nena_out <= ’1’; -- btn 2 nena INACTIVE
btn_1_nena_out <= ’1’; -- btn 1 nena INACTIVE
END IF;

END PROCESS;
END behavior;

The pinout for the output assignment module decode GAL is shown below:

C16V8A

nread_write_in =| 1| |20]* not used
addx_in_0 =| 2| |19]* not used
addx_in_1 =]| 3| |18]= led_ena_1_out
addx_in_2 =| 4| |17]= led_ena_2_out
addx_in_3 =| 5| |16]= seg7_ena_out
addx_in_4 =| 6] |15]= btn_3_nena_out
addx_in_5 =| 7| |14|= btn_2_nena_out
addx_in_6 =| 8| |13]|= btn_1_nena_out
nlatch_in =| 9| |12]= nsense_out
not used *|[10] |11]* not used

A.1.3 Transport Control Module
The VHDL code for the transport control decode GAL is shown below:

—-— DACS : Distributed Audio Control System

-- Copyright (C) 1997 Stephen Scott Richardson
- File: transp.vhd

-- Date: 03.13.97

-— Target: Atmel ATF16V8B

-- Transport control board pbus address decoding GAL

-- pbus addx function dir (from uC)
-- 0x17 7 segment 1 ena out
-- 0x18 7 segment 2 ena out
-- 0x19 7 segment 3 ena out
-- 0x20 led enable out
-- 0x33 button nena in
-- 0x50 encoder nena in

225

ENTITY transp_decode IS

PORT (

addx_in : IN bit_vector (6 DOWNTO 0);
nlatch_in : IN bit;

nread_write_in : 1IN bit;

seg7_1_ena_out : OUT bit;

seg7_2_ena_out : O0OUT bit;

seg7_3_ena_out : O0OUT bit;

led_ena_out : 0UT bit;

btn_nena_out : 0UT bit;

enc_nena_out : 0OUT bit;

nsense_out : 0OUT bit

)

-- Force package and pinout

ATTRIBUTE part_name of transp_decode:entity is "C16V8";

ATTRIBUTE pin_numbers of transp_decode:entity is

"nread_write_in:1 nlatch_in:2 addx_in(0):3 addx_in(1):4

addx_in(2):5 addx_in(3):6 addx_in(4):7 addx_in(5):8
addx_in(6):9 nsense_out:12 led_ena_out:13 seg7_3_ena_out:14
enc_nena_out:15 btn_nena_out:16 seg7_2_ena_out:17
seg?_1_ena_out:18";

END transp_decode;

ARCHITECTURE behavior OF transp_decode IS

BEGIN

PROCESS (nlatch_in, addx_in, nread_write_in)

BEGIN

IF nlatch_in = ’0’ AND nread_write_in = ’1’
AND addx_in = "0010111" THEN

-- pbus 0x17

nsense_out <= ’0’; —-- pbus nsense ACTIVE
seg7_1_ena_out <= ’1’; -- 7seg 1 ena ACTIVE
seg7_2_ena_out <= ’0’; -- 7seg 2 ena INACTIVE
btn_nena_out <= ’1°’; -- btn nena INACTIVE
enc_nena_out <= ’1’; -- enc nena INACTIVE
seg7_3_ena_out <= ’0’; -- 7seg 3 ena INACTIVE
led_ena_out <= ’0’; —-- led ena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0011000" THEN

-- pbus 0x18

nsense_out <= ’07; -- pbus nsense ACTIVE
seg7_1_ena_out <= ’0’; -- 7seg 1 ena INACTIVE
seg’7_2_ena_out <= ’1’; -- T7seg 2 ena ACTIVE

226

btn_nena_out <= ’1°’;
enc_nena_out <= ’1’;
seg7_3_ena_out <= ’0’;
led_ena_out <= ’0’;

-- btn nena INACTIVE
-- enc nena INACTIVE
-- 7seg 3 ena INACTIVE
-- led ena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’0’
AND addx_in = "0110011" THEN

-- pbus 0x33 (read)

nsense_out <= ’0’;
seg7_1_ena_out <= ’0’;
seg7_2_ena_out <= ’0’;
btn_nena_out <= ’0’;
enc_nena_out <= ’1’;
seg’7_3_ena_out <= ’0’;
led_ena_out <= ’0’;

pbus nsense ACTIVE
7seg 1 ena INACTIVE
7seg 2 ena INACTIVE
btn nena ACTIVE

enc nena INACTIVE
Tseg 3 ena INACTIVE
led ena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’0’
AND addx_in = "1010000" THEN

-- pbus 0x50 (read)

nsense_out <= ’0’;
seg7_1_ena_out <= ’0’;
seg7_2_ena_out <= ’0’;
btn_nena_out <= ’1°’;
enc_nena_out <= ’0’;
seg7_3_ena_out <= ’0’;
led_ena_out <= ’0’;

pbus nsense ACTIVE
7seg 1 ena INACTIVE
7seg 2 ena INACTIVE
btn nena INACTIVE
enc nena ACTIVE
7seg 3 ena INACTIVE
led ena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0011001" THEN

-- pbus 0x19

nsense_out <= ’0’;
seg7_1_ena_out <= ’0’;
seg’7_2_ena_out <= ’0’;
btn_nena_out <= ’1°’;
enc_nena_out <= ’1’;
seg7_3_ena_out <= ’1°;
led_ena_out <= ’0’;

pbus nsense ACTIVE
7seg 1 ena INACTIVE
Tseg 2 ena INACTIVE
btn nena INACTIVE
enc nena INACTIVE
7seg 3 ena ACTIVE
led ena INACTIVE

ELSIF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0100000" THEN

-- pbus 0x20

227

nsense_out <= ’07; -- pbus nsense ACTIVE

seg7_1_ena_out <= ’0’; -- 7seg 1 ena INACTIVE
seg7_2_ena_out <= ’0’; -- 7seg 2 ena INACTIVE
btn_nena_out <= ’1°’; -— btn nena INACTIVE
enc_nena_out <= ’1’; -- enc nena INACTIVE
seg7_3_ena_out <= ’0’; -- 7seg 3 ena INACTIVE
led_ena_out <= ’1°’; -- led ena ACTIVE

ELSE

-- not active

nsense_out <= ’17; -- pbus nsense INACTIVE
seg7_1_ena_out <= ’0’; -- 7seg 1 ena INACTIVE
seg7_2_ena_out <= ’0’; -- 7seg 2 ena INACTIVE
btn_nena_out <= ’1°’; -- btn nena INACTIVE
enc_nena_out <= ’1’; —-- enc nena INACTIVE
seg7_3_ena_out <= ’0’; -- 7seg 3 ena INACTIVE
led_ena_out <= ’0’; —-— led ena INACTIVE

END IF;

END PROCESS;
END behavior;

The pinout for the transport control decode GAL is shown below:

C16V8A

nread_write_in =| 1| |20]* not used
nlatch_in =| 2| [19]* not used
addx_in_0 =| 3| [18|= seg7_1_ena_out
addx_in_1 =| 4| [17|= seg7_2_ena_out
addx_in_2 =]| 5] |16|= btn_nena_out
addx_in_3 =| 6] |15|= enc_nena_out
addx_in_4 =| 7| |14|= seg7_3_ena_out
addx_in_5 =| 8| |13|= led_ena_out
addx_in_6 =| 9| |12|= nsense_out
not used *|[10] |11]* not used

A.2 Mixer Unit
A.2.1 Audio Input Module

The VHDL code used to synthesize the logic for the audio input module address decode GAL is
shown below:

-- File: input-1.vhd
-- Date: 03.13.97

228

-— Target: Atmel ATF16V8B
-- Input board trim control pbus address decoding GAL
-- First input board

-- pbus addx function dir (from uC)

-- 0x08 latch ena out

ENTITY input_decode IS

PORT (

addx_in : IN bit_vector (6 DOWNTO 0);
nlatch_in : IN bit;

nread_write_in : 1IN bit;

data_ena_out : 0UT bit;

nsense_out : 0OUT bit

)

-- Force part and pinout
ATTRIBUTE part_name of input_decode:entity is "C16V8";
ATTRIBUTE pin_numbers of input_decode:entity is
"nread_write_in:1 nlatch_in:2 addx_in(0):3 addx_in(1):4
addx_in(2):5 addx_in(3):6 addx_in(4):7 addx_in(5):8
addx_in(6) :9 nsense_out:12 data_ena_out:13";

END input_decode;

ARCHITECTURE behavior OF input_decode IS

BEGIN

PROCESS (nlatch_in, addx_in, nread_write_in)

BEGIN

IF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0001000" THEN

—-- pbus 0x08

nsense_out <= ’07; -- pbus nsense ACTIVE
data_ena_out <= ’1°’; —- data latch ena ACTIVE
ELSE

-- not active

nsense_out <= ’1’; —-- pbus nsense ACTIVE
data_ena_out <= ’0’; -- data latch ena INACTIVE
END IF;

END PROCESS;
END behavior;

The pinout for the input module decode GAL is shown below:

229

C16V8A

nread_write_in =| 1| |20]* not used
nlatch_in =| 2| [19]* not used
addx_in_0 =| 3| |18]* not used
addx_in_1 =| 4] |17]* not used
addx_in_2 =| 5| |16]* not used
addx_in_3 =| 6] |15]* not used
addx_in_4 =| 7| |14]* not used
addx_in_5 =| 8| |13|= data_ena_out
addx_in_6 =| 9] |12]= nsense_out
not used *|[10] |11]* not used

A.2.2 Mix Module

The VHDL code used to synthesize the logic for the mix module address decode GAL is shown
below:

-- File: mix-1.vhd

-- Date: 03.13.97

-- Target: Atmel ATF16VEB

—-— Mix board pbus address decoding GAL
-- first mix board

-- pbus addx function dir (from uC)

-- 0x10 latch ena out

ENTITY mix_decode IS

PORT (

addx_in : IN bit_vector (6 DOWNTO 0);
nlatch_in : IN bit;

nread_write_in : 1IN bit;

data_ena_out : 0UT bit;

nsense_out : 0OUT bit

)

-- force part and pinout
ATTRIBUTE part_name of mix_decode:entity is "C16V8";
ATTRIBUTE pin_numbers of mix_decode:entity is
"nread_write_in:1 nlatch_in:2 addx_in(0):3 addx_in(1):4
addx_in(2):5 addx_in(3):6 addx_in(4):7 addx_in(5):8
addx_in(6) :9 nsense_out:12 data_ena_out:13";

END mix_decode;

230

ARCHITECTURE behavior OF mix_decode IS

BEGIN

PROCESS (nlatch_in, addx_in, nread_write_in)

BEGIN

IF nlatch_in = ’0’ AND nread_write_in = ’1°
AND addx_in = "0010000" THEN

-- pbus 0x10

nsense_out <= ’07; -- pbus nsense ACTIVE
data_ena_out <= ’1°; —- data latch ena ACTIVE
ELSE

-- not active

nsense_out <= ’1’; —-- pbus nsense ACTIVE
data_ena_out <= ’0’; -- data latch ena INACTIVE
END IF;

END PROCESS;
END behavior;

The pinout for the mixer module decode GAL is shown below:

C16V8A

nread_write_in =| 1| |20]* not used
nlatch_in =| 2| [19]* not used
addx_in_0 =| 3| |18]* not used
addx_in_1 =| 4] |17]* not used
addx_in_2 =]| 5] |16]* not used
addx_in_3 =| 6] |15]* not used
addx_in_4 =| 7| |14]* not used
addx_in_5 =| 8| |13|= data_ena_out
addx_in_6 =| 9| |12]= nsense_out
not used *|[10] [11]* not used

A.2.3 Bus Combiner Module

The VHDL code used to synthesize the logic for the bus combiner address decode GAL is shown
below:

-= File: buscomb.vhd
- Date: 03.13.97
-- Target: Atmel ATF16V8B

231

—-- Bus combiner pbus address decoding GAL

-- pbus addx function dir (from uC)

-- 0x30 latch ena out

ENTITY buscomb_decode IS

PORT (

addx_in : IN bit_vector (6 DOWNTO 0);
nlatch_in : IN bit;

nread_write_in : 1IN bit;

relay_ena_out : 0UT bit;

nsense_out : 0OUT bit

)

-- force part and pinout
ATTRIBUTE part_name of buscomb_decode:entity is "C16V8";
ATTRIBUTE pin_numbers of buscomb_decode:entity is
"nread_write_in:1 nlatch_in:2 addx_in(0):3 addx_in(1):4
addx_in(2):5 addx_in(3):6 addx_in(4):7 addx_in(5):8
addx_in(6) :9 nsense_out:12 relay_ena_out:13";

END buscomb_decode;

ARCHITECTURE behavior OF buscomb_decode IS

BEGIN

PROCESS (nlatch_in, addx_in, nread_write_in)

BEGIN

IF nlatch_in = °0’ AND nread_write_in = ’1’
AND addx_in = "0110000" THEN

-- pbus 0x30

nsense_out <= ’0’; —-- pbus nsense ACTIVE
relay_ena_out <= ’1’; -- data latch ena ACTIVE
ELSE

-- not active

nsense_out <= ’17; -- pbus nsense ACTIVE
relay_ena_out <= ’0’; -- data latch ena INACTIVE
END IF;

END PROCESS;
END behavior;

The pinout for the bus combiner decode GAL is shown below:

232

C16V8A

nread_write_in =| 1| |20]* not used
nlatch_in =| 2| [19]* not used
addx_in_0 =]| 3| |18]* not used
addx_in_1 =| 4] |17]* not used
addx_in_2 =| 5] |16]* not used
addx_in_3 =| 6] |15]* not used
addx_in_4 =| 7| |14]* not used
addx_in_5 =| 8| [13|= relay_ena_out
addx_in_6 =| 9| |12]= nsense_out
not used *|[10] |11]* not used

233

B Axiom MC68HC11 Single Board Computer References

234

Memory Range Size Function
0xFFFF-0xE000 8K Program EEPROM
0xDFFF-0xB800 10.2K ROM, RAM or EEPROM
0xB7FF-0xB600 | 512 bytes 68HC11 Internal EEPROM
0xB5FF-0xB5F8 8 bytes R65C51 ACIA
0xB5FC-0xB5FF not used
0xB5FB control register
0xB5FA command register
0xB5F9 status register
0xB5F8 data register
0xB5F7-0xB5F4 4 bytes 82C55 ports
0xB5F7 control register
0xB5F6 port ¢
0xB5F5 port b
0xB5F4 port a
0xB5F3-0xB5F0 4 bytes LCD interface
0xB5F2-0xB5F3 not used
0xB5F1 data register
0xB5F0 command register
0xBSEF-0xB5EQ | 16 bytes | CS6 (onboard addx decoding)
0xB5DF-0xB5D0 | 16 bytes CS5
0xB5CF-0xB5C0 | 16 bytes CS4
0xB5BF-0xB5B0 | 16 bytes CS3
0xB5AF-0xB5A0 | 16 bytes CS2
0xB59F-0xB590 16 bytes CS1
0xB58F-0xB580 | 16 bytes CS0 (mixer Pbus controller)
0xB584-0xB58F not used
0xB583 control port
0xB582 port C
0xB581 port B
0xB580 port A
0xB57F-0x8000 13.7K ROM, RAM or EEPROM
0x7FFF-0x1040 28.6K RAM

Table 11: Axiom CMD-11A8 MC68HC11-based single board computer, memory map (1/2).

235

0x103F-0x1000 | 64 bytes | 68HC11 internal registers

0x103F CONFIG
0x103D INIT
0x103C HPRIO
0x1039 OPTION
0x102F SCDR
0x102E SCSR2
0x102D SCCR2
0x102C SCCR1
0x102B BAUD
0x1029 SPSR
0x1028 SPCR
0x1026 PACTL
0x1025 TFLG2
0x1024 TMSK2
0x1020 TCTL1
0x100F TCNT
0x100E TCNT
0x100D OC1D
0x100C OC1M
0x100B CFORC
0x100A PORTE
0x1009 DDRD
0x1008 PORTD
0x1007 DDRC
0x1005 PORTCL
0x1004 PORTB
0x1003 PORTC
0x1002 PIOC
0x1000 PORTA

0xOFFF-0x00FF 3.8K RAM

0x00FE-0x0000 | 256 bytes 68HC11 internal RAM

Table 12: Axiom CMD-11A8 MC68HC11-based single board computer, memory map (2/2).

236

Memory Range Size Function
0xFFFF-0xE000 8K Program EEPROM
0xDFFF-0xB800 10.2K external memory select
0xB7FF-0xB600 | 512 bytes 68HC11 Internal EEPROM
0xB5FF-0xB5F4 | 12 bytes CS7
0xB5F3-0xB5F0 4 bytes LCD interface
0xB5F2-0xB5F3 not used
0xB5F1 data register
0xB5F0 command register
0xBSEF-0xB5EQ | 16 bytes | CS6 (onboard addx decoding)
0xB5DF-0xB5D0 | 16 bytes CS5
0xB5CF-0xB5C0 | 16 bytes CS4
0xB5BF-0xB5B0 | 16 bytes CS3
0xB5AF-0xB5A0 | 16 bytes CS2
0xB59F-0xB590 | 16 bytes CS1 (graphics LCD)
0xB592-0xB59F not used
0xB591 command register
0xB590 data register
0xB58F-0xB580 | 16 bytes | CS0 (board Pbus controller)
0xB584-0xB58F not used
0xB583 control port
0xB582 port C
0xB581 port B
0xB580 port A
0xB57F-0x8000 13.7K external memory select
0x7FFF-0x6000 8K RAM (mirror)
0x2000-0x3FFF 8K RAM (mirror)

Table 13: Axiom CMM-11A8 MC68HC11-based single board computer, memory map (1/2).

237

0x103F-0x1000 | 64 bytes | 68HC11 internal registers

0x103F CONFIG
0x103D INIT
0x103C HPRIO
0x1039 OPTION
0x102F SCDR
0x102E SCSR2
0x102D SCCR2
0x102C SCCR1
0x102B BAUD
0x1029 SPSR
0x1028 SPCR
0x1026 PACTL
0x1025 TFLG2
0x1024 TMSK2
0x1020 TCTL1
0x100F TCNT
0x100E TCNT
0x100D OC1D
0x100C OC1M
0x100B CFORC
0x100A PORTE
0x1009 DDRD
0x1008 PORTD
0x1007 DDRC
0x1005 PORTCL
0x1004 PORTB
0x1003 PORTC
0x1002 PIOC
0x1000 PORTA

0xOFFF-0x00FF 3.8K Not Used

0x00FE-0x0000 | 256 bytes 68HC11 internal RAM

Table 14: Axiom CMM-11A8 MC68HC11-based single board computer, memory map (2/2).

238

C

References

C.1 Books

1.

Comer, Douglas E. and David L. Stevens. Internetworking with TCP/IP Volume III. Pren-
tice Hall, New Jersey, 1993.

. Herniter, Marc E. Schematic Capture with PSpice. Merrill/Macmillan College Publishing,

New York, 1994.

. Horowitz, Paul and Winfield Hill. The Art of Electronics, second edition. Cambridge Uni-

versity Press, New York, 1989.

. Pellerin, David and Michael Holley. Practical Design Using Programmable Logic. Prentice

Hall, New Jersey, 1991.

. Schneiderman, Ben. Designing the User Interface, Second Edition. Addison-Wesley, Mas-

sachusetts, 1992.

. Stevens, W. Richard. Advanced Programming in the Uniz Environment. Addison-Wesley,

Massachusetts, 1992.
Toth, Viktor. Visual C++ 4 UNLEASHED. Sams Publishing, Indiana, 1996.

8. Triebel, Walter A. and Avtar Singh. The 8088 and 8086 Microprocessors. Prentice Hall,

New Jersey, 1991.

C.2 Data Books and Data Sheets

1.

Axiom Manufacturing, CMD-11A8 HC11 Single Board Computer. Axiom Manufacturing,
Texas, 1995.

. Axiom Manufacturing, CMM-11A8 68HC11 Single Board Computer. Axiom Manufacturing,

Texas, 1995.

. Cypress Semiconductor, Warp VHDL Reference Manual. Cypress Semiconductor, Califor-

nia, 1995.
Hitachi, HD/4780 Dot Matriz LCD Controller. Hitachi.

5. ImageCraft, ICC11 68HC11 C Compiler and Development Environment Version 4.0. Im-

ageCraft, California, 1997.

6. Motorola, MC68HC11A8 Technical Data, Motorola.

National Semiconductor, CMOS Logic Databook, 1988 Edition. National Semiconductor,
California, 1988.

. Toshiba Corporation, TLX-711A-E0 Dot Matriz LCD Module Data Sheet. Toshiba Corpo-

ration, Japan, 1988.

C.3 Web Sites

S ke w =

Analog Devices, http://www.analog. com/

Dallas Semiconductor, http://www.dalsemi.com/
National Semiconductor, http://www.national.com/
NEbH532 data, http://www.pre.com/News/airtipl5.html
Philips (Signetics), http://www.philips.com/

XForms, http://bragg.phys.uwm.edu/xforms/

239

